File size: 20,789 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import torch
from .tables import *
from kaolin.utils.testing import check_tensor

__all__ = [
    'FlexiCubes'
]


class FlexiCubes:
    def __init__(self, device="cuda"):

        self.device = device
        self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
        self.num_vd_table = torch.tensor(num_vd_table,
                                         dtype=torch.long, device=device, requires_grad=False)
        self.check_table = torch.tensor(
            check_table,
            dtype=torch.long, device=device, requires_grad=False)

        self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
        self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
        self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
        self.quad_split_train = torch.tensor(
            [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)

        self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
                                         1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
        self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
        self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
                                       2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)

        self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
                                           dtype=torch.long, device=device)
        self.dir_faces_table = torch.tensor([
            [[5, 4], [3, 2], [4, 5], [2, 3]],
            [[5, 4], [1, 0], [4, 5], [0, 1]],
            [[3, 2], [1, 0], [2, 3], [0, 1]]
        ], dtype=torch.long, device=device)
        self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)

    def __call__(self, voxelgrid_vertices, scalar_field, cube_idx, resolution, qef_reg_scale=1e-3,
                 weight_scale=0.99, beta=None, alpha=None, gamma_f=None, voxelgrid_colors=None, training=False):
        assert torch.is_tensor(voxelgrid_vertices) and \
            check_tensor(voxelgrid_vertices, (None, 3), throw=False), \
            "'voxelgrid_vertices' should be a tensor of shape (num_vertices, 3)"
        num_vertices = voxelgrid_vertices.shape[0]
        assert torch.is_tensor(scalar_field) and \
            check_tensor(scalar_field, (num_vertices,), throw=False), \
            "'scalar_field' should be a tensor of shape (num_vertices,)"
        assert torch.is_tensor(cube_idx) and \
            check_tensor(cube_idx, (None, 8), throw=False), \
            "'cube_idx' should be a tensor of shape (num_cubes, 8)"
        num_cubes = cube_idx.shape[0]
        assert beta is None or (
            torch.is_tensor(beta) and
            check_tensor(beta, (num_cubes, 12), throw=False)
        ), "'beta' should be a tensor of shape (num_cubes, 12)"
        assert alpha is None or (
            torch.is_tensor(alpha) and
            check_tensor(alpha, (num_cubes, 8), throw=False)
        ), "'alpha' should be a tensor of shape (num_cubes, 8)"
        assert gamma_f is None or (
            torch.is_tensor(gamma_f) and
            check_tensor(gamma_f, (num_cubes,), throw=False)
        ), "'gamma_f' should be a tensor of shape (num_cubes,)"

        surf_cubes, occ_fx8 = self._identify_surf_cubes(scalar_field, cube_idx)
        if surf_cubes.sum() == 0:
            return (
                torch.zeros((0, 3), device=self.device),
                torch.zeros((0, 3), dtype=torch.long, device=self.device),
                torch.zeros((0), device=self.device),
                torch.zeros((0, voxelgrid_colors.shape[-1]), device=self.device) if voxelgrid_colors is not None else None
            )
        beta, alpha, gamma_f = self._normalize_weights(
            beta, alpha, gamma_f, surf_cubes, weight_scale)
        
        if voxelgrid_colors is not None:
            voxelgrid_colors = torch.sigmoid(voxelgrid_colors)

        case_ids = self._get_case_id(occ_fx8, surf_cubes, resolution)

        surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(
            scalar_field, cube_idx, surf_cubes
        )

        vd, L_dev, vd_gamma, vd_idx_map, vd_color = self._compute_vd(
            voxelgrid_vertices, cube_idx[surf_cubes], surf_edges, scalar_field,
            case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors)
        vertices, faces, s_edges, edge_indices, vertices_color = self._triangulate(
            scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map,
            vd_idx_map, surf_edges_mask, training, vd_color)
        return vertices, faces, L_dev, vertices_color

    def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
        """
        Regularizer L_dev as in Equation 8
        """
        dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
        mean_l2 = torch.zeros_like(vd[:, 0])
        mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
        mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
        return mad

    def _normalize_weights(self, beta, alpha, gamma_f, surf_cubes, weight_scale):
        """
        Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
        """
        n_cubes = surf_cubes.shape[0]

        if beta is not None:
            beta = (torch.tanh(beta) * weight_scale + 1)
        else:
            beta = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)

        if alpha is not None:
            alpha = (torch.tanh(alpha) * weight_scale + 1)
        else:
            alpha = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)

        if gamma_f is not None:
            gamma_f = torch.sigmoid(gamma_f) * weight_scale + (1 - weight_scale) / 2
        else:
            gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)

        return beta[surf_cubes], alpha[surf_cubes], gamma_f[surf_cubes]

    @torch.no_grad()
    def _get_case_id(self, occ_fx8, surf_cubes, res):
        """
        Obtains the ID of topology cases based on cell corner occupancy. This function resolves the 
        ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the 
        supplementary material. It should be noted that this function assumes a regular grid.
        """
        case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)

        problem_config = self.check_table.to(self.device)[case_ids]
        to_check = problem_config[..., 0] == 1
        problem_config = problem_config[to_check]
        if not isinstance(res, (list, tuple)):
            res = [res, res, res]

        # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
        # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
        # This allows efficient checking on adjacent cubes.
        problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
        vol_idx = torch.nonzero(problem_config_full[..., 0] == 0)  # N, 3
        vol_idx_problem = vol_idx[surf_cubes][to_check]
        problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
        vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]

        within_range = (
            vol_idx_problem_adj[..., 0] >= 0) & (
            vol_idx_problem_adj[..., 0] < res[0]) & (
            vol_idx_problem_adj[..., 1] >= 0) & (
            vol_idx_problem_adj[..., 1] < res[1]) & (
            vol_idx_problem_adj[..., 2] >= 0) & (
            vol_idx_problem_adj[..., 2] < res[2])

        vol_idx_problem = vol_idx_problem[within_range]
        vol_idx_problem_adj = vol_idx_problem_adj[within_range]
        problem_config = problem_config[within_range]
        problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
                                                 vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
        # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
        to_invert = (problem_config_adj[..., 0] == 1)
        idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
        case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
        return case_ids

    @torch.no_grad()
    def _identify_surf_edges(self, scalar_field, cube_idx, surf_cubes):
        """
        Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge 
        can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge 
        and marks the cube edges with this index.
        """
        occ_n = scalar_field < 0
        all_edges = cube_idx[surf_cubes][:, self.cube_edges].reshape(-1, 2)
        unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)

        unique_edges = unique_edges.long()
        mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1

        surf_edges_mask = mask_edges[_idx_map]
        counts = counts[_idx_map]

        mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_idx.device) * -1
        mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_idx.device)
        # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
        # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
        idx_map = mapping[_idx_map]
        surf_edges = unique_edges[mask_edges]
        return surf_edges, idx_map, counts, surf_edges_mask

    @torch.no_grad()
    def _identify_surf_cubes(self, scalar_field, cube_idx):
        """
        Identifies grid cubes that intersect with the underlying surface by checking if the signs at 
        all corners are not identical.
        """
        occ_n = scalar_field < 0
        occ_fx8 = occ_n[cube_idx.reshape(-1)].reshape(-1, 8)
        _occ_sum = torch.sum(occ_fx8, -1)
        surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
        return surf_cubes, occ_fx8

    def _linear_interp(self, edges_weight, edges_x):
        """
        Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
        """
        edge_dim = edges_weight.dim() - 2
        assert edges_weight.shape[edge_dim] == 2
        edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
                                 torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)]
                                 , edge_dim)
        denominator = edges_weight.sum(edge_dim)
        ue = (edges_x * edges_weight).sum(edge_dim) / denominator
        return ue

    def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3, qef_reg_scale):
        p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
        norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
        c_bx3 = c_bx3.reshape(-1, 3)
        A = norm_bxnx3
        B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)

        A_reg = (torch.eye(3, device=p_bxnx3.device) * qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
        B_reg = (qef_reg_scale * c_bx3).unsqueeze(-1)
        A = torch.cat([A, A_reg], 1)
        B = torch.cat([B, B_reg], 1)
        dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
        return dual_verts

    def _compute_vd(self, voxelgrid_vertices, surf_cubes_fx8, surf_edges, scalar_field,
                    case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors):
        """
        Computes the location of dual vertices as described in Section 4.2
        """
        alpha_nx12x2 = torch.index_select(input=alpha, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
        surf_edges_x = torch.index_select(input=voxelgrid_vertices, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
        surf_edges_s = torch.index_select(input=scalar_field, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
        zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
        
        if voxelgrid_colors is not None:
            C = voxelgrid_colors.shape[-1]
            surf_edges_c = torch.index_select(input=voxelgrid_colors, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, C)

        idx_map = idx_map.reshape(-1, 12)
        num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
        edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
        
        # if color is not None:
        #     vd_color = []

        total_num_vd = 0
        vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)

        for num in torch.unique(num_vd):
            cur_cubes = (num_vd == num)  # consider cubes with the same numbers of vd emitted (for batching)
            curr_num_vd = cur_cubes.sum() * num
            curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
            curr_edge_group_to_vd = torch.arange(
                curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
            total_num_vd += curr_num_vd
            curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
                cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)

            curr_mask = (curr_edge_group != -1)
            edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
            edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
            edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
            vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
            vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
            # if color is not None:
            #     vd_color.append(color[cur_cubes].unsqueeze(1).repeat(1, num, 1).reshape(-1, 3))
            
        edge_group = torch.cat(edge_group)
        edge_group_to_vd = torch.cat(edge_group_to_vd)
        edge_group_to_cube = torch.cat(edge_group_to_cube)
        vd_num_edges = torch.cat(vd_num_edges)
        vd_gamma = torch.cat(vd_gamma)
        # if color is not None:
        #     vd_color = torch.cat(vd_color)
        # else:
        #     vd_color = None

        vd = torch.zeros((total_num_vd, 3), device=self.device)
        beta_sum = torch.zeros((total_num_vd, 1), device=self.device)

        idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)

        x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
        s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
        

        zero_crossing_group = torch.index_select(
            input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)

        alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
                                            index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
        ue_group = self._linear_interp(s_group * alpha_group, x_group)

        beta_group = torch.gather(input=beta.reshape(-1), dim=0,
                                    index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
        beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
        vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
        
        '''
        interpolate colors use the same method as dual vertices
        '''
        if voxelgrid_colors is not None:
            vd_color = torch.zeros((total_num_vd, C), device=self.device)
            c_group = torch.index_select(input=surf_edges_c, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, C)
            uc_group = self._linear_interp(s_group * alpha_group, c_group)
            vd_color = vd_color.index_add_(0, index=edge_group_to_vd, source=uc_group * beta_group) / beta_sum
        else:
            vd_color = None
        
        L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)

        v_idx = torch.arange(vd.shape[0], device=self.device)  # + total_num_vd

        vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
                                                      12 + edge_group, src=v_idx[edge_group_to_vd])

        return vd, L_dev, vd_gamma, vd_idx_map, vd_color

    def _triangulate(self, scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, vd_color):
        """
        Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into 
        triangles based on the gamma parameter, as described in Section 4.3.
        """
        with torch.no_grad():
            group_mask = (edge_counts == 4) & surf_edges_mask  # surface edges shared by 4 cubes.
            group = idx_map.reshape(-1)[group_mask]
            vd_idx = vd_idx_map[group_mask]
            edge_indices, indices = torch.sort(group, stable=True)
            quad_vd_idx = vd_idx[indices].reshape(-1, 4)

            # Ensure all face directions point towards the positive SDF to maintain consistent winding.
            s_edges = scalar_field[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
            flip_mask = s_edges[:, 0] > 0
            quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
                                     quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))

        quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
        gamma_02 = quad_gamma[:, 0] * quad_gamma[:, 2]
        gamma_13 = quad_gamma[:, 1] * quad_gamma[:, 3]
        if not training:
            mask = (gamma_02 > gamma_13)
            faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
            faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
            faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
            faces = faces.reshape(-1, 3)
        else:
            vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
            vd_02 = (vd_quad[:, 0] + vd_quad[:, 2]) / 2
            vd_13 = (vd_quad[:, 1] + vd_quad[:, 3]) / 2
            weight_sum = (gamma_02 + gamma_13) + 1e-8
            vd_center = (vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
            
            if vd_color is not None:
                color_quad = torch.index_select(input=vd_color, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, vd_color.shape[-1])
                color_02 = (color_quad[:, 0] + color_quad[:, 2]) / 2
                color_13 = (color_quad[:, 1] + color_quad[:, 3]) / 2
                color_center = (color_02 * gamma_02.unsqueeze(-1) + color_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
                vd_color = torch.cat([vd_color, color_center])
            
            
            vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
            vd = torch.cat([vd, vd_center])
            faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
            faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
        return vd, faces, s_edges, edge_indices, vd_color