File size: 34,446 Bytes
7c4d825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import os
import sys
import logging
import threading
import torch
import warnings
import time
# Suppress the model loading warnings about non-meta parameters
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*")
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
# Add parent directory to path for imports during deployment
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(current_dir))
if parent_dir not in sys.path:
sys.path.insert(0, parent_dir)
from transformers import (
AutoProcessor,
AutoImageProcessor,
AutoModelForObjectDetection,
DetrImageProcessor,
DetrForObjectDetection,
AutoModelForImageSegmentation,
YolosImageProcessor,
YolosForObjectDetection,
SamModel,
SamProcessor
)
# Check if TIMM is available
try:
import timm
TIMM_AVAILABLE = True
except ImportError:
TIMM_AVAILABLE = False
logging.warning("TIMM library not available - color extraction model will not be loaded")
# ----------------------------------------------------------------------
# HARDWARE CONFIGURATION
# ----------------------------------------------------------------------
def setup_device():
if os.getenv("SPACE_ID"):
return "cpu"
elif torch.cuda.is_available():
device_count = torch.cuda.device_count()
if device_count >= 1:
return "cuda"
return "cpu"
def check_cuda_availability():
if os.getenv("SPACE_ID"):
logging.info("Running in Hugging Face Spaces (Zero GPU) - GPU will be available in decorated functions")
return False
if not torch.cuda.is_available():
logging.warning("\n" + "="*60 + "\n" +
"WARNING: CUDA NOT AVAILABLE!\n" +
"Running on CPU. Performance will be significantly reduced.\n" +
"="*60 + "\n")
return False
device_count = torch.cuda.device_count()
if device_count > 0:
for i in range(device_count):
props = torch.cuda.get_device_properties(i)
logging.info(f"GPU {i}: {props.name} (Memory: {props.total_memory / (1024**3):.1f} GB)")
else:
logging.info("CUDA available but no GPUs detected")
return True
def check_hardware_environment():
gpu_available = check_cuda_availability()
if os.getenv("SPACE_ID"):
ensure_zerogpu()
else:
if gpu_available:
logging.info(f"Running on {setup_device().upper()}")
else:
logging.info("Running on CPU")
# ----------------------------------------------------------------------
# ZERO GPU CONFIGURATION
# ----------------------------------------------------------------------
def ensure_zerogpu():
space_id = os.getenv("SPACE_ID")
hf_token = os.getenv("HF_TOKEN")
if not space_id:
logging.info("Not running in Hugging Face Spaces")
return
try:
from huggingface_hub import HfApi
api = HfApi(token=hf_token) if hf_token else HfApi()
space_info = api.get_space_runtime(space_id)
current_hardware = getattr(space_info, 'hardware', None)
logging.info(f"Current space hardware: {current_hardware}")
if current_hardware and "a10g" not in current_hardware.lower():
logging.warning(f"Space is running on {current_hardware}, not zero-a10g")
if hf_token:
try:
api.request_space_hardware(repo_id=space_id, hardware="zero-a10g")
logging.info("Requested hardware change to zero-a10g")
except Exception as e:
logging.error(f"Failed to request hardware change: {e}")
else:
logging.warning("Cannot request hardware change without HF_TOKEN")
else:
logging.info("Space is already running on zero-a10g")
except ImportError:
logging.warning("huggingface_hub not available, cannot verify space hardware")
except Exception as e:
logging.error(f"Unexpected error in ensure_zerogpu: {str(e)}")
DEVICE = setup_device()
# ----------------------------------------------------------------------
# MODEL PRECISION SETTINGS
# ----------------------------------------------------------------------
RTDETR_FULL_PRECISION = True
HEAD_DETECTION_FULL_PRECISION = True
RMBG_FULL_PRECISION = True
BIREFNET_FULL_PRECISION = True
YOLOS_FASHIONPEDIA_FULL_PRECISION = True
TIMM_COLOR_EXTRACTOR_FULL_PRECISION = True
# ----------------------------------------------------------------------
# OPTIMIZATION SETTINGS
# ----------------------------------------------------------------------
USE_TORCH_COMPILE = True
TORCH_COMPILE_MODE = "reduce-overhead"
TORCH_COMPILE_BACKEND = "inductor"
ENABLE_CHANNELS_LAST = True
ENABLE_CUDA_GRAPHS = True
USE_MIXED_PRECISION = True
# ----------------------------------------------------------------------
# MODEL REPOSITORY IDENTIFIERS
# ----------------------------------------------------------------------
RTDETR_REPO = "PekingU/rtdetr_r50vd"
HEAD_DETECTION_REPO = "sanali209/DT_face_head_char"
RMBG_REPO = "briaai/RMBG-2.0" # Original RMBG model
BIREFNET_REPO = "ZhengPeng7/BiRefNet-matting" # BiRefNet matting model
YOLOS_FASHIONPEDIA_REPO = "valentinafeve/yolos-fashionpedia"
TIMM_COLOR_EXTRACTOR_REPO = "hf-hub:timm/resnet50.a2_in1k"
SAM_REPO = "facebook/sam-vit-base" # Segment Anything Model
# ----------------------------------------------------------------------
# BIREFNET CONFIGURATION
# ----------------------------------------------------------------------
BIREFNET_CONFIG_PYTHON_TEMPLATE = """from transformers.configuration_utils import PretrainedConfig
class BiRefNetConfig(PretrainedConfig):
model_type = "SegformerForSemanticSegmentation"
num_channels = 3
backbone = "mit_b5"
hidden_size = 768
num_hidden_layers = 12
num_attention_heads = 12
bb_pretrained = False
"""
BIREFNET_CONFIG_JSON = """{
"_name_or_path": "briaai/RMBG-2.0",
"architectures": ["BiRefNet"],
"auto_map": {
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
"AutoModelForImageSegmentation": "birefnet.BiRefNet"
},
"bb_pretrained": false
}"""
BIREFNET_CONFIG_FILES = {
"BiRefNet_config.py": BIREFNET_CONFIG_PYTHON_TEMPLATE,
"config.json": BIREFNET_CONFIG_JSON
}
BIREFNET_DOWNLOAD_FILES = ["birefnet.py", "preprocessor_config.json"]
BIREFNET_WEIGHT_FILES = ["model.safetensors", "pytorch_model.bin"]
DEFAULT_LOCAL_RMBG_DIR = "models/rmbg2"
# ----------------------------------------------------------------------
# ERROR MESSAGES
# ----------------------------------------------------------------------
ERROR_NO_HF_TOKEN = "HF_TOKEN environment variable not set. Please set it in your Space secrets."
ERROR_ACCESS_DENIED = "Access denied to model. Please check your credentials."
ERROR_AUTH_FAILED = "Authentication failed. Please set HF_TOKEN environment variable."
# ----------------------------------------------------------------------
# GLOBAL MODEL INSTANCES
# ----------------------------------------------------------------------
RTDETR_PROCESSOR = None
RTDETR_MODEL = None
HEAD_PROCESSOR = None
HEAD_MODEL = None
RMBG_MODEL = None
BIREFNET_MODEL = None
YOLOS_PROCESSOR = None
YOLOS_MODEL = None
TIMM_COLOR_MODEL = None
TIMM_COLOR_TRANSFORMS = None
SAM_MODEL = None
SAM_PROCESSOR = None
# ----------------------------------------------------------------------
# GLOBAL STATE VARIABLES
# ----------------------------------------------------------------------
MODELS_LOADED = False
LOAD_ERROR = ""
LOAD_LOCK = threading.Lock()
# ----------------------------------------------------------------------
# MODEL LOADING WORKAROUNDS FOR SPACES ENVIRONMENT
# ----------------------------------------------------------------------
def patch_spaces_device_handling():
try:
import spaces.zero.torch.patching as spaces_patching
original_untyped_storage_new = spaces_patching._untyped_storage_new_register
def patched_untyped_storage_new_register(storage_cls):
def wrapper(*args, **kwargs):
device = kwargs.get('device')
if device is not None and isinstance(device, str):
kwargs['device'] = torch.device(device)
return original_untyped_storage_new(storage_cls)(*args, **kwargs)
return wrapper
spaces_patching._untyped_storage_new_register = patched_untyped_storage_new_register
logging.info("Successfully patched spaces device handling")
return True
except Exception as e:
logging.debug(f"Spaces patching not available or failed: {e}")
return False
def is_spaces_environment():
return os.getenv("SPACE_ID") is not None or "spaces" in sys.modules
# ----------------------------------------------------------------------
# BIREFNET FILE MANAGEMENT
# ----------------------------------------------------------------------
def create_config_files(local_dir: str) -> None:
os.makedirs(local_dir, exist_ok=True)
for filename, content in BIREFNET_CONFIG_FILES.items():
file_path = os.path.join(local_dir, filename)
if not os.path.exists(file_path):
with open(file_path, "w") as f:
f.write(content)
logging.info(f"Created {filename} in {local_dir}")
def download_birefnet_files(local_dir: str, token: str) -> None:
from huggingface_hub import hf_hub_download
for file in BIREFNET_DOWNLOAD_FILES:
file_path = os.path.join(local_dir, file)
if not os.path.exists(file_path):
try:
hf_hub_download(
repo_id=RMBG_REPO,
filename=file,
token=token,
local_dir=local_dir,
local_dir_use_symlinks=False
)
logging.info(f"Downloaded {file} to {local_dir}")
except Exception as e:
logging.error(f"Failed to download {file}: {e}")
raise RuntimeError(f"Failed to download {file} from {RMBG_REPO}")
def download_model_weights(local_dir: str, token: str) -> None:
from huggingface_hub import hf_hub_download
weights_exist = any(
os.path.exists(os.path.join(local_dir, weight_file))
for weight_file in BIREFNET_WEIGHT_FILES
)
if weights_exist:
return
try:
hf_hub_download(
repo_id=RMBG_REPO,
filename="model.safetensors",
token=token,
local_dir=local_dir,
local_dir_use_symlinks=False
)
logging.info(f"Downloaded model.safetensors to {local_dir}")
return
except Exception as e:
logging.warning(f"Failed to download model.safetensors: {e}")
try:
hf_hub_download(
repo_id=RMBG_REPO,
filename="pytorch_model.bin",
token=token,
local_dir=local_dir,
local_dir_use_symlinks=False
)
logging.info(f"Downloaded pytorch_model.bin to {local_dir}")
except Exception as e:
logging.error(f"Failed to download pytorch_model.bin: {e}")
raise RuntimeError(f"Failed to download model weights from {RMBG_REPO}")
def ensure_birefnet_files(local_dir: str, token: str) -> None:
create_config_files(local_dir)
download_birefnet_files(local_dir, token)
download_model_weights(local_dir, token)
def ensure_models_loaded() -> None:
global MODELS_LOADED, LOAD_ERROR
if not MODELS_LOADED:
if is_spaces_environment():
# ----------------------------------------------------------------------
# ZERO GPU MODEL LOADING: 1. Models NOT loaded at startup
# ----------------------------------------------------------------------
time.sleep(1)
print("="*70)
print("ZERO GPU MODEL LOADING: 1. Models NOT loaded at startup")
print("="*70)
logging.info("ZERO GPU MODEL LOADING: Models NOT loaded at startup")
logging.info("ZERO GPU MODEL LOADING: Models will be loaded on-demand in GPU context")
return
with LOAD_LOCK:
if not MODELS_LOADED:
if LOAD_ERROR:
raise RuntimeError(f"Models failed to load: {LOAD_ERROR}")
try:
load_models()
except Exception as e:
LOAD_ERROR = str(e)
raise
# ----------------------------------------------------------------------
# MODEL LOADING WITH PRECISION
# ----------------------------------------------------------------------
def load_model_with_precision(model_class, repo_id: str, full_precision: bool, device_map: bool = True, trust_remote_code: bool = False):
global DEVICE
try:
spaces_env = is_spaces_environment()
if spaces_env:
torch_device = torch.device("cpu")
patch_spaces_device_handling()
else:
if DEVICE == "cuda":
torch.cuda.empty_cache()
torch_device = torch.device(DEVICE)
load_kwargs = {
"torch_dtype": torch.float32 if full_precision else torch.float16,
"trust_remote_code": trust_remote_code,
"low_cpu_mem_usage": True,
"use_safetensors": True
}
if spaces_env:
load_kwargs["device_map"] = None
elif DEVICE == "cuda" and device_map and torch.cuda.device_count() > 1:
load_kwargs["device_map"] = "auto"
try:
model = model_class.from_pretrained(repo_id, **load_kwargs)
if not spaces_env and not hasattr(model, 'hf_device_map'):
model = model.to(torch_device)
if not full_precision and DEVICE == "cuda":
model = model.half()
except (ValueError, RuntimeError, OSError, UnicodeDecodeError) as e:
logging.warning(f"Failed to load model with initial configuration: {e}")
if "Unable to load weights from pytorch checkpoint" in str(e) or "UnicodeDecodeError" in str(e):
logging.info(f"Attempting to clear cache and retry for {repo_id}")
try:
from huggingface_hub import scan_cache_dir
cache_info = scan_cache_dir()
for repo in cache_info.repos:
if repo_id.replace("/", "--") in repo.repo_id:
repo.delete()
logging.info(f"Cleared cache for {repo_id}")
break
except Exception as cache_e:
logging.warning(f"Cache clearing failed: {cache_e}")
try:
load_kwargs_retry = {
"torch_dtype": torch.float32,
"trust_remote_code": trust_remote_code,
"force_download": True,
"device_map": None,
"low_cpu_mem_usage": True
}
model = model_class.from_pretrained(repo_id, **load_kwargs_retry)
model = model.to(torch_device)
except Exception as retry_e:
logging.warning(f"Retry with force_download failed: {retry_e}")
try:
load_kwargs_tf = {
"from_tf": True,
"torch_dtype": torch.float32,
"trust_remote_code": trust_remote_code,
"device_map": None,
"low_cpu_mem_usage": True
}
model = model_class.from_pretrained(repo_id, **load_kwargs_tf)
model = model.to(torch_device)
logging.info(f"Successfully loaded {repo_id} from TensorFlow checkpoint")
except Exception as tf_e:
logging.warning(f"TensorFlow fallback failed: {tf_e}")
try:
load_kwargs_basic = {
"torch_dtype": torch.float32,
"trust_remote_code": trust_remote_code,
"device_map": None,
"use_safetensors": False,
"local_files_only": False
}
model = model_class.from_pretrained(repo_id, **load_kwargs_basic)
model = model.to(torch_device)
logging.info(f"Successfully loaded {repo_id} with basic configuration")
except Exception as basic_e:
logging.error(f"All fallback strategies failed for {repo_id}: {basic_e}")
raise RuntimeError(f"Unable to load model {repo_id} after all retry attempts: {basic_e}")
else:
load_kwargs_fallback = {
"torch_dtype": torch.float32,
"trust_remote_code": trust_remote_code,
"device_map": None
}
model = model_class.from_pretrained(repo_id, **load_kwargs_fallback)
model = model.to(torch_device)
model.eval()
if not spaces_env:
with torch.no_grad():
logging.info(f"Verifying model {repo_id} is on correct device")
param = next(model.parameters())
if DEVICE == "cuda" and not param.is_cuda:
model = model.to(torch_device)
logging.warning(f"Forced model {repo_id} to {DEVICE}")
logging.info(f"Model {repo_id} device: {param.device}")
else:
logging.info(f"Model {repo_id} loaded on CPU (Zero GPU environment)")
return model
except Exception as e:
logging.error(f"Failed to load model from {repo_id} on {DEVICE}: {e}")
raise
def handle_rmbg_access_error(error_msg: str) -> None:
if "403" in error_msg and "gated repo" in error_msg:
logging.error("\n" + "="*60 + "\n"
"ERROR: Access denied to RMBG-2.0 model!\n"
"You need to request access at: https://huggingface.co/briaai/RMBG-2.0\n" +
"="*60 + "\n")
raise RuntimeError(ERROR_ACCESS_DENIED)
elif "401" in error_msg:
logging.error("\n" + "="*60 + "\n"
"ERROR: Authentication failed!\n"
"Please set your HF_TOKEN environment variable.\n" +
"="*60 + "\n")
raise RuntimeError(ERROR_AUTH_FAILED)
else:
raise RuntimeError(error_msg)
# ----------------------------------------------------------------------
# INDIVIDUAL MODEL LOADING FUNCTIONS
# ----------------------------------------------------------------------
def load_rtdetr_model() -> None:
global RTDETR_PROCESSOR, RTDETR_MODEL
logging.info("Loading RT-DETR model...")
RTDETR_PROCESSOR = AutoProcessor.from_pretrained(RTDETR_REPO)
RTDETR_MODEL = load_model_with_precision(
AutoModelForObjectDetection,
RTDETR_REPO,
RTDETR_FULL_PRECISION,
device_map=False
)
logging.info("RT-DETR model loaded successfully")
def load_head_detection_model() -> None:
global HEAD_PROCESSOR, HEAD_MODEL
logging.info("Loading Head Detection model...")
HEAD_PROCESSOR = AutoImageProcessor.from_pretrained(HEAD_DETECTION_REPO)
HEAD_MODEL = load_model_with_precision(
DetrForObjectDetection,
HEAD_DETECTION_REPO,
HEAD_DETECTION_FULL_PRECISION,
device_map=False
)
logging.info("Head Detection model loaded successfully")
def load_birefnet_model() -> None:
global BIREFNET_MODEL
logging.info("Loading BiRefNet-matting model...")
try:
BIREFNET_MODEL = load_model_with_precision(
AutoModelForImageSegmentation,
BIREFNET_REPO,
RMBG_FULL_PRECISION,
trust_remote_code=True,
device_map=False
)
logging.info("BiRefNet-matting model loaded successfully")
except Exception as e:
logging.error(f"Failed to load BiRefNet-matting model: {e}")
raise
def load_rmbg_model() -> None:
global RMBG_MODEL
logging.info("Loading RMBG model...")
token = os.getenv("HF_TOKEN", "")
if not token:
logging.error(ERROR_NO_HF_TOKEN)
logging.warning("RMBG model requires HF_TOKEN. Skipping RMBG model loading...")
RMBG_MODEL = None
return
local_dir = DEFAULT_LOCAL_RMBG_DIR
try:
ensure_birefnet_files(local_dir, token)
except RuntimeError as e:
handle_rmbg_access_error(str(e))
os.environ["HF_HOME"] = os.path.dirname(local_dir)
try:
RMBG_MODEL = load_model_with_precision(
AutoModelForImageSegmentation,
local_dir,
RMBG_FULL_PRECISION,
trust_remote_code=True,
device_map=False
)
if USE_TORCH_COMPILE and DEVICE == "cuda":
try:
RMBG_MODEL = torch.compile(
RMBG_MODEL,
mode=TORCH_COMPILE_MODE,
backend=TORCH_COMPILE_BACKEND,
fullgraph=False,
dynamic=False
)
logging.info(f"RMBG model compiled with mode={TORCH_COMPILE_MODE}, backend={TORCH_COMPILE_BACKEND}")
except Exception as e:
logging.warning(f"Failed to compile RMBG model: {e}")
logging.info("RMBG-2.0 model loaded successfully from local directory")
except Exception as e:
error_msg = str(e)
handle_rmbg_access_error(error_msg)
def load_yolos_fashionpedia_model() -> None:
global YOLOS_PROCESSOR, YOLOS_MODEL
logging.info("Loading YOLOS FashionPedia model...")
try:
YOLOS_PROCESSOR = AutoImageProcessor.from_pretrained(
YOLOS_FASHIONPEDIA_REPO,
size={"height": 512, "width": 512}
)
except Exception:
logging.warning("Failed to set custom size for YOLOS processor, using default")
YOLOS_PROCESSOR = AutoImageProcessor.from_pretrained(YOLOS_FASHIONPEDIA_REPO)
YOLOS_MODEL = load_model_with_precision(
YolosForObjectDetection,
YOLOS_FASHIONPEDIA_REPO,
YOLOS_FASHIONPEDIA_FULL_PRECISION,
device_map=False
)
logging.info("YOLOS FashionPedia model loaded successfully")
def load_timm_color_model() -> None:
global TIMM_COLOR_MODEL, TIMM_COLOR_TRANSFORMS
if not TIMM_AVAILABLE:
logging.warning("TIMM not available - skipping color extraction model")
return
logging.info("Loading TIMM ResNet50 A2 color extraction model...")
try:
TIMM_COLOR_MODEL = timm.create_model(
'hf-hub:timm/resnet50.a2_in1k',
pretrained=True,
num_classes=0,
global_pool=''
)
if not is_spaces_environment():
TIMM_COLOR_MODEL = TIMM_COLOR_MODEL.to(DEVICE)
if not TIMM_COLOR_EXTRACTOR_FULL_PRECISION and DEVICE == "cuda":
TIMM_COLOR_MODEL = TIMM_COLOR_MODEL.half()
TIMM_COLOR_MODEL.eval()
data_config = timm.data.resolve_data_config({}, model=TIMM_COLOR_MODEL)
TIMM_COLOR_TRANSFORMS = timm.data.create_transform(**data_config, is_training=False)
from src.processing.return_images.timm_resnet50_color import timm_color_extractor
timm_color_extractor.initialize_model(TIMM_COLOR_MODEL, TIMM_COLOR_TRANSFORMS)
logging.info("TIMM ResNet50 A2 color extraction model loaded successfully")
except Exception as e:
logging.warning(f"Failed to load TIMM color extraction model: {e}")
TIMM_COLOR_MODEL = None
TIMM_COLOR_TRANSFORMS = None
# ----------------------------------------------------------------------
# MAIN MODEL LOADING FUNCTION
# ----------------------------------------------------------------------
def load_models() -> None:
global MODELS_LOADED, LOAD_ERROR
with LOAD_LOCK:
if MODELS_LOADED:
logging.info("Models already loaded")
return
# Skip the ZERO GPU step 2 print here as it's already shown in test execution flow
if is_spaces_environment():
logging.info("ZERO GPU MODEL LOADING: User request triggered model loading")
check_hardware_environment()
from src.config.constants import BACKGROUND_REMOVAL_MODEL
models_status = {
"rtdetr": False,
"head_detection": False,
"background_removal": False,
"yolos": False
}
critical_errors = []
try:
load_rtdetr_model()
models_status["rtdetr"] = True
except Exception as e:
critical_errors.append(f"RT-DETR: {str(e)}")
logging.error(f"Failed to load RT-DETR model: {e}")
try:
load_head_detection_model()
models_status["head_detection"] = True
except Exception as e:
critical_errors.append(f"Head Detection: {str(e)}")
logging.error(f"Failed to load Head Detection model: {e}")
# Load only the selected background removal model
bg_removal_loaded = False
if BACKGROUND_REMOVAL_MODEL == 1:
try:
load_rmbg_model()
bg_removal_loaded = RMBG_MODEL is not None
logging.info(f"RMBG model loaded: {bg_removal_loaded}")
except Exception as e:
logging.warning(f"Failed to load RMBG model: {e}")
elif BACKGROUND_REMOVAL_MODEL == 2:
try:
load_birefnet_model()
bg_removal_loaded = BIREFNET_MODEL is not None
logging.info(f"BiRefNet model loaded: {bg_removal_loaded}")
except Exception as e:
logging.warning(f"Failed to load BiRefNet model: {e}")
models_status["background_removal"] = bg_removal_loaded
try:
load_yolos_fashionpedia_model()
models_status["yolos"] = True
except Exception as e:
critical_errors.append(f"YOLOS: {str(e)}")
logging.error(f"Failed to load YOLOS model: {e}")
try:
load_timm_color_model()
models_status["timm_color"] = TIMM_COLOR_MODEL is not None
logging.info(f"TIMM color model loaded: {models_status['timm_color']}")
except Exception as e:
logging.warning(f"Failed to load TIMM color model: {e}")
models_status["timm_color"] = False
# Try to load SAM for color extraction (optional)
try:
logging.info("Loading SAM for color extraction...")
global SAM_PROCESSOR, SAM_MODEL
SAM_PROCESSOR = SamProcessor.from_pretrained(SAM_REPO)
SAM_MODEL = load_model_with_precision(
SamModel,
SAM_REPO,
full_precision=True,
device_map=False
)
from src.processing.return_images.segment_for_color import simple_segmentation
simple_segmentation.initialize_model(SAM_MODEL, SAM_PROCESSOR)
models_status["sam_color"] = True
logging.info("SAM loaded for color extraction")
except Exception as e:
logging.info(f"SAM not loaded (optional): {e}")
models_status["sam_color"] = False
if models_status["rtdetr"] or models_status["yolos"]:
MODELS_LOADED = True
LOAD_ERROR = ""
loaded = [k for k, v in models_status.items() if v]
failed = [k for k, v in models_status.items() if not v]
logging.info(f"Models loaded: {', '.join(loaded)}")
if failed:
logging.warning(f"Models failed: {', '.join(failed)}")
else:
error_msg = "Failed to load critical models. " + "; ".join(critical_errors)
logging.error(error_msg)
LOAD_ERROR = error_msg
raise RuntimeError(error_msg)
# ----------------------------------------------------------------------
# MOVE MODELS TO GPU FUNCTION
# ----------------------------------------------------------------------
def move_models_to_gpu():
global RMBG_MODEL, BIREFNET_MODEL, RTDETR_PROCESSOR, RTDETR_MODEL, HEAD_MODEL, YOLOS_PROCESSOR, YOLOS_MODEL, TIMM_COLOR_MODEL, SAM_MODEL, DEVICE
if not torch.cuda.is_available():
logging.warning("CUDA not available, cannot move models to GPU")
return
original_device = DEVICE
DEVICE = "cuda"
try:
if RMBG_MODEL is not None:
logging.info("Moving RMBG model to GPU...")
RMBG_MODEL = RMBG_MODEL.to("cuda")
if not RMBG_FULL_PRECISION:
RMBG_MODEL = RMBG_MODEL.half()
logging.info("RMBG model moved to GPU")
if BIREFNET_MODEL is not None:
logging.info("Moving BiRefNet model to GPU...")
BIREFNET_MODEL = BIREFNET_MODEL.to("cuda")
if not BIREFNET_FULL_PRECISION:
BIREFNET_MODEL = BIREFNET_MODEL.half()
logging.info("BiRefNet model moved to GPU")
if RTDETR_MODEL is not None:
logging.info("Moving RT-DETR model to GPU...")
RTDETR_MODEL = RTDETR_MODEL.to("cuda")
if not RTDETR_FULL_PRECISION:
RTDETR_MODEL = RTDETR_MODEL.half()
logging.info("RT-DETR model moved to GPU")
if HEAD_MODEL is not None:
logging.info("Moving Head Detection model to GPU...")
HEAD_MODEL = HEAD_MODEL.to("cuda")
if not HEAD_DETECTION_FULL_PRECISION:
HEAD_MODEL = HEAD_MODEL.half()
logging.info("Head Detection model moved to GPU")
if YOLOS_MODEL is not None:
logging.info("Moving YOLOS model to GPU...")
YOLOS_MODEL = YOLOS_MODEL.to("cuda")
if not YOLOS_FASHIONPEDIA_FULL_PRECISION:
YOLOS_MODEL = YOLOS_MODEL.half()
logging.info("YOLOS model moved to GPU")
if TIMM_COLOR_MODEL is not None:
logging.info("Moving TIMM color model to GPU...")
from src.processing.return_images.timm_resnet50_color import timm_color_extractor
timm_color_extractor.move_to_gpu()
logging.info("TIMM color model moved to GPU")
logging.info(f"SAM_MODEL status: {SAM_MODEL is not None}")
if SAM_MODEL is not None:
logging.info("Moving SAM model to GPU...")
SAM_MODEL = SAM_MODEL.to("cuda")
# Update the simple_segmentation instance with GPU model
from src.processing.return_images.segment_for_color import simple_segmentation
simple_segmentation._sam_model = SAM_MODEL
simple_segmentation.device = torch.device('cuda')
logging.info("SAM model moved to GPU")
else:
logging.warning("SAM_MODEL is None, cannot move to GPU")
logging.info("All models moved to GPU successfully")
except Exception as e:
logging.error(f"Failed to move models to GPU: {e}")
DEVICE = original_device
raise
# ----------------------------------------------------------------------
# MODEL LOADER CLASS
# ----------------------------------------------------------------------
class ModelLoader:
def __init__(self):
self.device = DEVICE
def get_model(self, model_name: str):
global RMBG_MODEL, BIREFNET_MODEL, RTDETR_MODEL, HEAD_MODEL, YOLOS_MODEL, TIMM_COLOR_MODEL
ensure_models_loaded()
if model_name == "rmbg":
if RMBG_MODEL is None:
raise RuntimeError("RMBG model not loaded")
return RMBG_MODEL
elif model_name == "birefnet":
if BIREFNET_MODEL is None:
raise RuntimeError("BiRefNet model not loaded")
return BIREFNET_MODEL
elif model_name == "rtdetr":
if RTDETR_MODEL is None:
raise RuntimeError("RT-DETR model not loaded")
return RTDETR_MODEL
elif model_name == "head":
if HEAD_MODEL is None:
raise RuntimeError("Head detection model not loaded")
return HEAD_MODEL
elif model_name == "yolos":
if YOLOS_MODEL is None:
raise RuntimeError("YOLOS model not loaded")
return YOLOS_MODEL
elif model_name == "timm_color":
if TIMM_COLOR_MODEL is None:
raise RuntimeError("TIMM color model not loaded")
return TIMM_COLOR_MODEL
else:
raise ValueError(f"Unknown model: {model_name}")
def get_processor(self, model_name: str):
global RTDETR_PROCESSOR, HEAD_PROCESSOR, YOLOS_PROCESSOR
ensure_models_loaded()
if model_name == "rtdetr":
if RTDETR_PROCESSOR is None:
raise RuntimeError("RT-DETR processor not loaded")
return RTDETR_PROCESSOR
elif model_name == "head":
if HEAD_PROCESSOR is None:
raise RuntimeError("Head detection processor not loaded")
return HEAD_PROCESSOR
elif model_name == "yolos":
if YOLOS_PROCESSOR is None:
raise RuntimeError("YOLOS processor not loaded")
return YOLOS_PROCESSOR
else:
raise ValueError(f"No processor for model: {model_name}")
# Create global instance
model_loader = ModelLoader()
|