Spaces:
Sleeping
Sleeping
File size: 5,482 Bytes
ef02bce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
"""
Main interface for the FlightSure application.
Preforms Gradio interface setup and calls the backend function.
Author: William Parker
"""
import os
import pickle
from datetime import datetime
from typing import Optional
import gradio as gr
import joblib
import pandas as pd
from dotenv import load_dotenv
from gradio_calendar import Calendar
from numpy import ndarray
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression
import open_weather
# Get variables
load_dotenv()
unvalidated_open_weather_api_key: str | None = os.getenv("OPEN_WEATHER_API_KEY")
env_open_weather_api_key: str
if unvalidated_open_weather_api_key is not None:
env_open_weather_api_key = unvalidated_open_weather_api_key
with open(
os.path.join(os.path.dirname(__file__), "helpers", "airport_codes.pickle"), "rb"
) as f:
airport_codes = pickle.load(f)
# Main processing function
def backend(
open_weather_api_key_input: str,
airport: str,
flight_time: str,
date: datetime,
):
"""
Main processing function for the FlightSure application.
Uses the OpenWeather API to get the weather forecast for the given airport and time.
Then predicts the flight delay based on the weather forecast.
"""
# Format date time
format_str = "%H:%M" if len(flight_time.split(":")) == 2 else "%H:%M:%S"
time_obj = datetime.strptime(flight_time, format_str).time()
scheduled_time = datetime.combine(date.date(), time_obj)
if unvalidated_open_weather_api_key is not None:
open_weather_api_key = env_open_weather_api_key
elif open_weather_api_key_input != "":
open_weather_api_key = open_weather_api_key_input
else:
raise ValueError(
"OpenWeather API Key is missing. Please enter it in the text box or in the .env file."
)
# Get weather
raw_forecast = open_weather.get_weather(
airport, scheduled_time, open_weather_api_key
)
input_dict = open_weather.parse_weather(raw_forecast)
# Create a text summary of the weather
weather_forecast = f"""Temperature: {round(input_dict["Temperature"][0])} F
Pressure: {input_dict["Altimeter_Pressure"][0]} hPa
Visibility: {input_dict["Visibility"][0]} m
Wind Speed: {input_dict["Wind_Speed"][0]} mph
Rain: {round(input_dict["Precipitation"][0], 2)} mm"""
input_values = pd.DataFrame(input_dict)
# Run the models
model_path = os.path.join(os.path.dirname(__file__), "..", "models", airport)
weather_cancellation_classification_path = os.path.join(
model_path, "weather_cancellation_classification.pkl"
)
weather_cancellation_classification: RandomForestClassifier = joblib.load(
weather_cancellation_classification_path
)
cancellation_prediction: bool = weather_cancellation_classification.predict(
input_values
)[0]
cancellation_chance: ndarray = weather_cancellation_classification.predict_proba(
input_values
)[0]
cancellation_text = f"We predict that your flight will {'' if cancellation_prediction else 'not'} be canceled. Chance of cancellation: {round(cancellation_chance[1] * 100, 2)}%."
weather_delay_classification_path = os.path.join(
model_path, "weather_delay_classification.pkl"
)
weather_delay_classification: RandomForestClassifier = joblib.load(
weather_delay_classification_path
)
delay_bool_prediction: bool = weather_delay_classification.predict(input_values)[0]
delay_bool_chance: ndarray = weather_delay_classification.predict_proba(
input_values
)[0]
delay_text = f"We predict that your flight will {'' if delay_bool_prediction else 'not'} be delayed. Chance of delay: {round(delay_bool_chance[1] * 100, 2)}%. "
weather_delay_regression_path = os.path.join(
model_path, "weather_delay_regression.pkl"
)
weather_delay_regression: LinearRegression = joblib.load(
weather_delay_regression_path
)
delay_length: float = weather_delay_regression.predict(input_values)[0]
if delay_bool_prediction:
delay_length_text = (
f"The predicted delay length is {round(delay_length)} minutes."
)
else:
delay_length_text = "N/A"
return weather_forecast, cancellation_text, delay_text, delay_length_text
# Interface Components
open_weather_api_textbox = gr.Textbox(
label="OpenWeather API Key:",
info="Leave blank if you set this in the .env file."
)
dropdown = gr.components.Dropdown(
choices=airport_codes, label="Select your airport code:"
)
time_textbox = gr.components.Textbox(label="Enter departure time:")
calendar = Calendar(
type="datetime",
label="Select date of departure:",
info="Click the calendar icon to bring up the calendar.",
)
inputs = [open_weather_api_textbox, dropdown, time_textbox, calendar]
weather_stats_textbox = gr.Textbox(label="Weather Forecast:")
cancellation_chance_textbox = gr.Textbox(label="Chance of Cancellation:")
delay_chance_textbox = gr.Textbox(label="Chance of Delay:")
delay_length_textbox = gr.Textbox(label="Length of Delay:")
outputs = [
weather_stats_textbox,
cancellation_chance_textbox,
delay_chance_textbox,
delay_length_textbox,
]
# Interface
interface = gr.Interface(
fn=backend,
inputs=inputs,
outputs=outputs,
title="FlightSure",
allow_flagging=False,
)
# Launch
if __name__ == "__main__":
interface.launch()
|