File size: 4,905 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import absolute_import, division, print_function

import argparse
import os
import os.path as op
import code
import json
import zipfile
import torch
import numpy as np
from custom_mesh_graphormer.utils.metric_pampjpe import get_alignMesh


def load_pred_json(filepath):
    archive = zipfile.ZipFile(filepath, 'r')
    jsondata = archive.read('pred.json')
    reference = json.loads(jsondata.decode("utf-8"))
    return reference[0], reference[1]


def multiscale_fusion(output_dir):
    s = '10'
    filepath = output_dir+'ckpt200-sc10_rot0-pred.zip'
    ref_joints, ref_vertices = load_pred_json(filepath)
    ref_joints_array = np.asarray(ref_joints)
    ref_vertices_array = np.asarray(ref_vertices)

    rotations = [0.0]
    for i in range(1,10):
        rotations.append(i*10)
        rotations.append(i*-10)
    
    scale = [0.7,0.8,0.9,1.0,1.1]
    multiscale_joints = []
    multiscale_vertices = []

    counter = 0
    for s in scale:
        for r in rotations:
            setting = 'sc%02d_rot%s'%(int(s*10),str(int(r)))
            filepath = output_dir+'ckpt200-'+setting+'-pred.zip'
            joints, vertices = load_pred_json(filepath)
            joints_array = np.asarray(joints)
            vertices_array = np.asarray(vertices)

            pa_joint_error, pa_joint_array, _ = get_alignMesh(joints_array, ref_joints_array, reduction=None)
            pa_vertices_error, pa_vertices_array, _ = get_alignMesh(vertices_array, ref_vertices_array, reduction=None)
            print('--------------------------')
            print('scale:', s, 'rotate', r)
            print('PAMPJPE:', 1000*np.mean(pa_joint_error))
            print('PAMPVPE:', 1000*np.mean(pa_vertices_error))
            multiscale_joints.append(pa_joint_array)
            multiscale_vertices.append(pa_vertices_array)
            counter = counter + 1

    overall_joints_array = ref_joints_array.copy()
    overall_vertices_array = ref_vertices_array.copy()
    for i in range(counter):
        overall_joints_array += multiscale_joints[i]
        overall_vertices_array += multiscale_vertices[i]

    overall_joints_array /= (1+counter)
    overall_vertices_array /= (1+counter)
    pa_joint_error, pa_joint_array, _ = get_alignMesh(overall_joints_array, ref_joints_array, reduction=None)
    pa_vertices_error, pa_vertices_array, _ = get_alignMesh(overall_vertices_array, ref_vertices_array, reduction=None)
    print('--------------------------')
    print('overall:')
    print('PAMPJPE:', 1000*np.mean(pa_joint_error))
    print('PAMPVPE:', 1000*np.mean(pa_vertices_error))

    joint_output_save = overall_joints_array.tolist()
    mesh_output_save = overall_vertices_array.tolist()

    print('save results to pred.json')
    with open('pred.json', 'w') as f:
        json.dump([joint_output_save, mesh_output_save], f)


    filepath = output_dir+'ckpt200-multisc-pred.zip'
    resolved_submit_cmd = 'zip ' + filepath + '  ' +  'pred.json'
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)
    resolved_submit_cmd = 'rm pred.json'
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)


def run_multiscale_inference(model_path, mode, output_dir):
    
    if mode==True:
        rotations = [0.0]
        for i in range(1,10):
            rotations.append(i*10)
            rotations.append(i*-10)
        scale = [0.7,0.8,0.9,1.0,1.1]
    else:
        rotations = [0.0]
        scale = [1.0] 

    job_cmd = "python ./src/tools/run_gphmer_handmesh.py " \
            "--val_yaml freihand_v3/test.yaml " \
            "--resume_checkpoint %s " \
            "--per_gpu_eval_batch_size 32 --run_eval_only --num_worker 2 " \
            "--multiscale_inference " \
            "--rot %f " \
            "--sc %s " \
            "--arch hrnet-w64 " \
            "--num_hidden_layers 4 " \
            "--num_attention_heads 4 " \
            "--input_feat_dim 2051,512,128 " \
            "--hidden_feat_dim 1024,256,64 " \
            "--output_dir %s"

    for s in scale:
        for r in rotations:
            resolved_submit_cmd = job_cmd%(model_path, r, s, output_dir)
            print(resolved_submit_cmd)
            os.system(resolved_submit_cmd)

def main(args):
    model_path = args.model_path
    mode = args.multiscale_inference
    output_dir = args.output_dir
    run_multiscale_inference(model_path, mode, output_dir)
    if mode==True:
        multiscale_fusion(output_dir)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Evaluate a checkpoint in the folder")
    parser.add_argument("--model_path")
    parser.add_argument("--multiscale_inference", default=False, action='store_true',) 
    parser.add_argument("--output_dir", default='output/', type=str, required=False,
                        help="The output directory to save checkpoint and test results.")
    args = parser.parse_args()
    main(args)