Spaces:
Configuration error
Configuration error
File size: 17,128 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
End-to-end inference codes for
3D hand mesh reconstruction from an image
"""
from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._mano import MANO, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_hand_data_loader
from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction_and_att_local, visualize_reconstruction_no_text
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection
from PIL import Image
from torchvision import transforms
from comfy.model_management import get_torch_device
device = get_torch_device()
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
transform_visualize = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor()])
def run_inference(args, image_list, Graphormer_model, mano, renderer, mesh_sampler):
# switch to evaluate mode
Graphormer_model.eval()
mano.eval()
with torch.no_grad():
for image_file in image_list:
if 'pred' not in image_file:
att_all = []
print(image_file)
img = Image.open(image_file)
img_tensor = transform(img)
img_visual = transform_visualize(img)
batch_imgs = torch.unsqueeze(img_tensor, 0).to(device)
batch_visual_imgs = torch.unsqueeze(img_visual, 0).to(device)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices, hidden_states, att = Graphormer_model(batch_imgs, mano, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_mesh = mano.get_3d_joints(pred_vertices)
pred_3d_pelvis = pred_3d_joints_from_mesh[:,cfg.J_NAME.index('Wrist'),:]
pred_3d_joints_from_mesh = pred_3d_joints_from_mesh - pred_3d_pelvis[:, None, :]
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]
# save attantion
att_max_value = att[-1]
att_cpu = np.asarray(att_max_value.cpu().detach())
att_all.append(att_cpu)
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_mesh = mano.get_3d_joints(pred_vertices)
# obtain 2d joints, which are projected from 3d joints of mesh
pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
pred_2d_coarse_vertices_from_mesh = orthographic_projection(pred_vertices_sub.contiguous(), pred_camera.contiguous())
visual_imgs_output = visualize_mesh( renderer, batch_visual_imgs[0],
pred_vertices[0].detach(),
pred_camera.detach())
# visual_imgs_output = visualize_mesh_and_attention( renderer, batch_visual_imgs[0],
# pred_vertices[0].detach(),
# pred_vertices_sub[0].detach(),
# pred_2d_coarse_vertices_from_mesh[0].detach(),
# pred_2d_joints_from_mesh[0].detach(),
# pred_camera.detach(),
# att[-1][0].detach())
visual_imgs = visual_imgs_output.transpose(1,2,0)
visual_imgs = np.asarray(visual_imgs)
temp_fname = image_file[:-4] + '_graphormer_pred.jpg'
print('save to ', temp_fname)
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
return
def visualize_mesh( renderer, images,
pred_vertices_full,
pred_camera):
img = images.cpu().numpy().transpose(1,2,0)
# Get predict vertices for the particular example
vertices_full = pred_vertices_full.cpu().numpy()
cam = pred_camera.cpu().numpy()
# Visualize only mesh reconstruction
rend_img = visualize_reconstruction_no_text(img, 224, vertices_full, cam, renderer, color='light_blue')
rend_img = rend_img.transpose(2,0,1)
return rend_img
def visualize_mesh_and_attention( renderer, images,
pred_vertices_full,
pred_vertices,
pred_2d_vertices,
pred_2d_joints,
pred_camera,
attention):
img = images.cpu().numpy().transpose(1,2,0)
# Get predict vertices for the particular example
vertices_full = pred_vertices_full.cpu().numpy()
vertices = pred_vertices.cpu().numpy()
vertices_2d = pred_2d_vertices.cpu().numpy()
joints_2d = pred_2d_joints.cpu().numpy()
cam = pred_camera.cpu().numpy()
att = attention.cpu().numpy()
# Visualize reconstruction and attention
rend_img = visualize_reconstruction_and_att_local(img, 224, vertices_full, vertices, vertices_2d, cam, renderer, joints_2d, att, color='light_blue')
rend_img = rend_img.transpose(2,0,1)
return rend_img
def parse_args():
parser = argparse.ArgumentParser()
#########################################################
# Data related arguments
#########################################################
parser.add_argument("--num_workers", default=4, type=int,
help="Workers in dataloader.")
parser.add_argument("--img_scale_factor", default=1, type=int,
help="adjust image resolution.")
parser.add_argument("--image_file_or_path", default='./samples/hand', type=str,
help="test data")
#########################################################
# Loading/saving checkpoints
#########################################################
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
help="Path to pre-trained transformer model or model type.")
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
help="Path to specific checkpoint for resume training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name.")
parser.add_argument('-a', '--arch', default='hrnet-w64',
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
#########################################################
# Model architectures
#########################################################
parser.add_argument("--num_hidden_layers", default=4, type=int, required=False,
help="Update model config if given")
parser.add_argument("--hidden_size", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--num_attention_heads", default=4, type=int, required=False,
help="Update model config if given. Note that the division of "
"hidden_size / num_attention_heads should be in integer.")
parser.add_argument("--intermediate_size", default=-1, type=int, required=False,
help="Update model config if given.")
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--which_gcn", default='0,0,1', type=str,
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv")
parser.add_argument("--mesh_type", default='hand', type=str, help="body or hand")
#########################################################
# Others
#########################################################
parser.add_argument("--run_eval_only", default=True, action='store_true',)
parser.add_argument("--device", type=str, default='cuda',
help="cuda or cpu")
parser.add_argument('--seed', type=int, default=88,
help="random seed for initialization.")
args = parser.parse_args()
return args
def main(args):
global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
mkdir(args.output_dir)
logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and MANO utils
mano_model = MANO().to(args.device)
mano_model.layer = mano_model.layer.to(device)
mesh_sampler = Mesh()
# Renderer for visualization
renderer = Renderer(faces=mano_model.face)
# Load pretrained model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*2)
if which_blk_graph[i]==1:
config.graph_conv = True
logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
logger.info("Init model from scratch.")
trans_encoder.append(model)
# create backbone model
if args.arch=='hrnet':
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-1])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
state_dict = torch.load(args.resume_checkpoint)
_model.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
torch.cuda.empty_cache()
# update configs to enable attention outputs
setattr(_model.trans_encoder[-1].config,'output_attentions', True)
setattr(_model.trans_encoder[-1].config,'output_hidden_states', True)
_model.trans_encoder[-1].bert.encoder.output_attentions = True
_model.trans_encoder[-1].bert.encoder.output_hidden_states = True
for iter_layer in range(4):
_model.trans_encoder[-1].bert.encoder.layer[iter_layer].attention.self.output_attentions = True
for inter_block in range(3):
setattr(_model.trans_encoder[-1].config,'device', args.device)
_model.to(args.device)
logger.info("Run inference")
image_list = []
if not args.image_file_or_path:
raise ValueError("image_file_or_path not specified")
if op.isfile(args.image_file_or_path):
image_list = [args.image_file_or_path]
elif op.isdir(args.image_file_or_path):
# should be a path with images only
for filename in os.listdir(args.image_file_or_path):
if filename.endswith(".png") or filename.endswith(".jpg") and 'pred' not in filename:
image_list.append(args.image_file_or_path+'/'+filename)
else:
raise ValueError("Cannot find images at {}".format(args.image_file_or_path))
run_inference(args, image_list, _model, mano_model, renderer, mesh_sampler)
if __name__ == "__main__":
args = parse_args()
main(args)
|