File size: 63,196 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
import math
import random
from enum import Enum
from typing import Dict, Optional, Sequence, Tuple, Union

import cv2
import numpy as np
import skimage.transform

from custom_albumentations.core.bbox_utils import denormalize_bbox, normalize_bbox

from ... import random_utils
from ...core.transforms_interface import (
    BoxInternalType,
    DualTransform,
    ImageColorType,
    KeypointInternalType,
    ScaleFloatType,
    to_tuple,
)
from ..functional import bbox_from_mask
from . import functional as F

__all__ = [
    "ShiftScaleRotate",
    "ElasticTransform",
    "Perspective",
    "Affine",
    "PiecewiseAffine",
    "VerticalFlip",
    "HorizontalFlip",
    "Flip",
    "Transpose",
    "OpticalDistortion",
    "GridDistortion",
    "PadIfNeeded",
]


class ShiftScaleRotate(DualTransform):
    """Randomly apply affine transforms: translate, scale and rotate the input.

    Args:
        shift_limit ((float, float) or float): shift factor range for both height and width. If shift_limit
            is a single float value, the range will be (-shift_limit, shift_limit). Absolute values for lower and
            upper bounds should lie in range [0, 1]. Default: (-0.0625, 0.0625).
        scale_limit ((float, float) or float): scaling factor range. If scale_limit is a single float value, the
            range will be (-scale_limit, scale_limit). Note that the scale_limit will be biased by 1.
            If scale_limit is a tuple, like (low, high), sampling will be done from the range (1 + low, 1 + high).
            Default: (-0.1, 0.1).
        rotate_limit ((int, int) or int): rotation range. If rotate_limit is a single int value, the
            range will be (-rotate_limit, rotate_limit). Default: (-45, 45).
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
            cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
            Default: cv2.BORDER_REFLECT_101
        value (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
        mask_value (int, float,
                    list of int,
                    list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.
        shift_limit_x ((float, float) or float): shift factor range for width. If it is set then this value
            instead of shift_limit will be used for shifting width.  If shift_limit_x is a single float value,
            the range will be (-shift_limit_x, shift_limit_x). Absolute values for lower and upper bounds should lie in
            the range [0, 1]. Default: None.
        shift_limit_y ((float, float) or float): shift factor range for height. If it is set then this value
            instead of shift_limit will be used for shifting height.  If shift_limit_y is a single float value,
            the range will be (-shift_limit_y, shift_limit_y). Absolute values for lower and upper bounds should lie
            in the range [0, 1]. Default: None.
        rotate_method (str): rotation method used for the bounding boxes. Should be one of "largest_box" or "ellipse".
            Default: "largest_box"
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, keypoints

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        shift_limit=0.0625,
        scale_limit=0.1,
        rotate_limit=45,
        interpolation=cv2.INTER_LINEAR,
        border_mode=cv2.BORDER_REFLECT_101,
        value=None,
        mask_value=None,
        shift_limit_x=None,
        shift_limit_y=None,
        rotate_method="largest_box",
        always_apply=False,
        p=0.5,
    ):
        super(ShiftScaleRotate, self).__init__(always_apply, p)
        self.shift_limit_x = to_tuple(shift_limit_x if shift_limit_x is not None else shift_limit)
        self.shift_limit_y = to_tuple(shift_limit_y if shift_limit_y is not None else shift_limit)
        self.scale_limit = to_tuple(scale_limit, bias=1.0)
        self.rotate_limit = to_tuple(rotate_limit)
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.value = value
        self.mask_value = mask_value
        self.rotate_method = rotate_method

        if self.rotate_method not in ["largest_box", "ellipse"]:
            raise ValueError(f"Rotation method {self.rotate_method} is not valid.")

    def apply(self, img, angle=0, scale=0, dx=0, dy=0, interpolation=cv2.INTER_LINEAR, **params):
        return F.shift_scale_rotate(img, angle, scale, dx, dy, interpolation, self.border_mode, self.value)

    def apply_to_mask(self, img, angle=0, scale=0, dx=0, dy=0, **params):
        return F.shift_scale_rotate(img, angle, scale, dx, dy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)

    def apply_to_keypoint(self, keypoint, angle=0, scale=0, dx=0, dy=0, rows=0, cols=0, **params):
        return F.keypoint_shift_scale_rotate(keypoint, angle, scale, dx, dy, rows, cols)

    def get_params(self):
        return {
            "angle": random.uniform(self.rotate_limit[0], self.rotate_limit[1]),
            "scale": random.uniform(self.scale_limit[0], self.scale_limit[1]),
            "dx": random.uniform(self.shift_limit_x[0], self.shift_limit_x[1]),
            "dy": random.uniform(self.shift_limit_y[0], self.shift_limit_y[1]),
        }

    def apply_to_bbox(self, bbox, angle, scale, dx, dy, **params):
        return F.bbox_shift_scale_rotate(bbox, angle, scale, dx, dy, self.rotate_method, **params)

    def get_transform_init_args(self):
        return {
            "shift_limit_x": self.shift_limit_x,
            "shift_limit_y": self.shift_limit_y,
            "scale_limit": to_tuple(self.scale_limit, bias=-1.0),
            "rotate_limit": self.rotate_limit,
            "interpolation": self.interpolation,
            "border_mode": self.border_mode,
            "value": self.value,
            "mask_value": self.mask_value,
            "rotate_method": self.rotate_method,
        }


class ElasticTransform(DualTransform):
    """Elastic deformation of images as described in [Simard2003]_ (with modifications).
    Based on https://gist.github.com/ernestum/601cdf56d2b424757de5

    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
         Convolutional Neural Networks applied to Visual Document Analysis", in
         Proc. of the International Conference on Document Analysis and
         Recognition, 2003.

    Args:
        alpha (float):
        sigma (float): Gaussian filter parameter.
        alpha_affine (float): The range will be (-alpha_affine, alpha_affine)
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
            cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
            Default: cv2.BORDER_REFLECT_101
        value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
        mask_value (int, float,
                    list of ints,
                    list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.
        approximate (boolean): Whether to smooth displacement map with fixed kernel size.
                               Enabling this option gives ~2X speedup on large images.
        same_dxdy (boolean): Whether to use same random generated shift for x and y.
                             Enabling this option gives ~2X speedup.

    Targets:
        image, mask, bbox

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        alpha=1,
        sigma=50,
        alpha_affine=50,
        interpolation=cv2.INTER_LINEAR,
        border_mode=cv2.BORDER_REFLECT_101,
        value=None,
        mask_value=None,
        always_apply=False,
        approximate=False,
        same_dxdy=False,
        p=0.5,
    ):
        super(ElasticTransform, self).__init__(always_apply, p)
        self.alpha = alpha
        self.alpha_affine = alpha_affine
        self.sigma = sigma
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.value = value
        self.mask_value = mask_value
        self.approximate = approximate
        self.same_dxdy = same_dxdy

    def apply(self, img, random_state=None, interpolation=cv2.INTER_LINEAR, **params):
        return F.elastic_transform(
            img,
            self.alpha,
            self.sigma,
            self.alpha_affine,
            interpolation,
            self.border_mode,
            self.value,
            np.random.RandomState(random_state),
            self.approximate,
            self.same_dxdy,
        )

    def apply_to_mask(self, img, random_state=None, **params):
        return F.elastic_transform(
            img,
            self.alpha,
            self.sigma,
            self.alpha_affine,
            cv2.INTER_NEAREST,
            self.border_mode,
            self.mask_value,
            np.random.RandomState(random_state),
            self.approximate,
            self.same_dxdy,
        )

    def apply_to_bbox(self, bbox, random_state=None, **params):
        rows, cols = params["rows"], params["cols"]
        mask = np.zeros((rows, cols), dtype=np.uint8)
        bbox_denorm = F.denormalize_bbox(bbox, rows, cols)
        x_min, y_min, x_max, y_max = bbox_denorm[:4]
        x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
        mask[y_min:y_max, x_min:x_max] = 1
        mask = F.elastic_transform(
            mask,
            self.alpha,
            self.sigma,
            self.alpha_affine,
            cv2.INTER_NEAREST,
            self.border_mode,
            self.mask_value,
            np.random.RandomState(random_state),
            self.approximate,
        )
        bbox_returned = bbox_from_mask(mask)
        bbox_returned = F.normalize_bbox(bbox_returned, rows, cols)
        return bbox_returned

    def get_params(self):
        return {"random_state": random.randint(0, 10000)}

    def get_transform_init_args_names(self):
        return (
            "alpha",
            "sigma",
            "alpha_affine",
            "interpolation",
            "border_mode",
            "value",
            "mask_value",
            "approximate",
            "same_dxdy",
        )


class Perspective(DualTransform):
    """Perform a random four point perspective transform of the input.

    Args:
        scale (float or (float, float)): standard deviation of the normal distributions. These are used to sample
            the random distances of the subimage's corners from the full image's corners.
            If scale is a single float value, the range will be (0, scale). Default: (0.05, 0.1).
        keep_size (bool): Whether to resize image’s back to their original size after applying the perspective
            transform. If set to False, the resulting images may end up having different shapes
            and will always be a list, never an array. Default: True
        pad_mode (OpenCV flag): OpenCV border mode.
        pad_val (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
            Default: 0
        mask_pad_val (int, float, list of int, list of float): padding value for mask
            if border_mode is cv2.BORDER_CONSTANT. Default: 0
        fit_output (bool): If True, the image plane size and position will be adjusted to still capture
            the whole image after perspective transformation. (Followed by image resizing if keep_size is set to True.)
            Otherwise, parts of the transformed image may be outside of the image plane.
            This setting should not be set to True when using large scale values as it could lead to very large images.
            Default: False
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, keypoints, bboxes

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        scale=(0.05, 0.1),
        keep_size=True,
        pad_mode=cv2.BORDER_CONSTANT,
        pad_val=0,
        mask_pad_val=0,
        fit_output=False,
        interpolation=cv2.INTER_LINEAR,
        always_apply=False,
        p=0.5,
    ):
        super().__init__(always_apply, p)
        self.scale = to_tuple(scale, 0)
        self.keep_size = keep_size
        self.pad_mode = pad_mode
        self.pad_val = pad_val
        self.mask_pad_val = mask_pad_val
        self.fit_output = fit_output
        self.interpolation = interpolation

    def apply(self, img, matrix=None, max_height=None, max_width=None, **params):
        return F.perspective(
            img, matrix, max_width, max_height, self.pad_val, self.pad_mode, self.keep_size, params["interpolation"]
        )

    def apply_to_bbox(self, bbox, matrix=None, max_height=None, max_width=None, **params):
        return F.perspective_bbox(bbox, params["rows"], params["cols"], matrix, max_width, max_height, self.keep_size)

    def apply_to_keypoint(self, keypoint, matrix=None, max_height=None, max_width=None, **params):
        return F.perspective_keypoint(
            keypoint, params["rows"], params["cols"], matrix, max_width, max_height, self.keep_size
        )

    @property
    def targets_as_params(self):
        return ["image"]

    def get_params_dependent_on_targets(self, params):
        h, w = params["image"].shape[:2]

        scale = random_utils.uniform(*self.scale)
        points = random_utils.normal(0, scale, [4, 2])
        points = np.mod(np.abs(points), 0.32)

        # top left -- no changes needed, just use jitter
        # top right
        points[1, 0] = 1.0 - points[1, 0]  # w = 1.0 - jitter
        # bottom right
        points[2] = 1.0 - points[2]  # w = 1.0 - jitt
        # bottom left
        points[3, 1] = 1.0 - points[3, 1]  # h = 1.0 - jitter

        points[:, 0] *= w
        points[:, 1] *= h

        # Obtain a consistent order of the points and unpack them individually.
        # Warning: don't just do (tl, tr, br, bl) = _order_points(...)
        # here, because the reordered points is used further below.
        points = self._order_points(points)
        tl, tr, br, bl = points

        # compute the width of the new image, which will be the
        # maximum distance between bottom-right and bottom-left
        # x-coordiates or the top-right and top-left x-coordinates
        min_width = None
        max_width = None
        while min_width is None or min_width < 2:
            width_top = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
            width_bottom = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
            max_width = int(max(width_top, width_bottom))
            min_width = int(min(width_top, width_bottom))
            if min_width < 2:
                step_size = (2 - min_width) / 2
                tl[0] -= step_size
                tr[0] += step_size
                bl[0] -= step_size
                br[0] += step_size

        # compute the height of the new image, which will be the maximum distance between the top-right
        # and bottom-right y-coordinates or the top-left and bottom-left y-coordinates
        min_height = None
        max_height = None
        while min_height is None or min_height < 2:
            height_right = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
            height_left = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
            max_height = int(max(height_right, height_left))
            min_height = int(min(height_right, height_left))
            if min_height < 2:
                step_size = (2 - min_height) / 2
                tl[1] -= step_size
                tr[1] -= step_size
                bl[1] += step_size
                br[1] += step_size

        # now that we have the dimensions of the new image, construct
        # the set of destination points to obtain a "birds eye view",
        # (i.e. top-down view) of the image, again specifying points
        # in the top-left, top-right, bottom-right, and bottom-left order
        # do not use width-1 or height-1 here, as for e.g. width=3, height=2
        # the bottom right coordinate is at (3.0, 2.0) and not (2.0, 1.0)
        dst = np.array([[0, 0], [max_width, 0], [max_width, max_height], [0, max_height]], dtype=np.float32)

        # compute the perspective transform matrix and then apply it
        m = cv2.getPerspectiveTransform(points, dst)

        if self.fit_output:
            m, max_width, max_height = self._expand_transform(m, (h, w))

        return {"matrix": m, "max_height": max_height, "max_width": max_width, "interpolation": self.interpolation}

    @classmethod
    def _expand_transform(cls, matrix, shape):
        height, width = shape
        # do not use width-1 or height-1 here, as for e.g. width=3, height=2, max_height
        # the bottom right coordinate is at (3.0, 2.0) and not (2.0, 1.0)
        rect = np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32)
        dst = cv2.perspectiveTransform(np.array([rect]), matrix)[0]

        # get min x, y over transformed 4 points
        # then modify target points by subtracting these minima  => shift to (0, 0)
        dst -= dst.min(axis=0, keepdims=True)
        dst = np.around(dst, decimals=0)

        matrix_expanded = cv2.getPerspectiveTransform(rect, dst)
        max_width, max_height = dst.max(axis=0)
        return matrix_expanded, int(max_width), int(max_height)

    @staticmethod
    def _order_points(pts: np.ndarray) -> np.ndarray:
        pts = np.array(sorted(pts, key=lambda x: x[0]))
        left = pts[:2]  # points with smallest x coordinate - left points
        right = pts[2:]  # points with greatest x coordinate - right points

        if left[0][1] < left[1][1]:
            tl, bl = left
        else:
            bl, tl = left

        if right[0][1] < right[1][1]:
            tr, br = right
        else:
            br, tr = right

        return np.array([tl, tr, br, bl], dtype=np.float32)

    def get_transform_init_args_names(self):
        return "scale", "keep_size", "pad_mode", "pad_val", "mask_pad_val", "fit_output", "interpolation"


class Affine(DualTransform):
    """Augmentation to apply affine transformations to images.
    This is mostly a wrapper around the corresponding classes and functions in OpenCV.

    Affine transformations involve:

        - Translation ("move" image on the x-/y-axis)
        - Rotation
        - Scaling ("zoom" in/out)
        - Shear (move one side of the image, turning a square into a trapezoid)

    All such transformations can create "new" pixels in the image without a defined content, e.g.
    if the image is translated to the left, pixels are created on the right.
    A method has to be defined to deal with these pixel values.
    The parameters `cval` and `mode` of this class deal with this.

    Some transformations involve interpolations between several pixels
    of the input image to generate output pixel values. The parameters `interpolation` and
    `mask_interpolation` deals with the method of interpolation used for this.

    Args:
        scale (number, tuple of number or dict): Scaling factor to use, where ``1.0`` denotes "no change" and
            ``0.5`` is zoomed out to ``50`` percent of the original size.
                * If a single number, then that value will be used for all images.
                * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``.
                  That the same range will be used for both x- and y-axis. To keep the aspect ratio, set
                  ``keep_ratio=True``, then the same value will be used for both x- and y-axis.
                * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``.
                  Each of these keys can have the same values as described above.
                  Using a dictionary allows to set different values for the two axis and sampling will then happen
                  *independently* per axis, resulting in samples that differ between the axes. Note that when
                  the ``keep_ratio=True``, the x- and y-axis ranges should be the same.
        translate_percent (None, number, tuple of number or dict): Translation as a fraction of the image height/width
            (x-translation, y-translation), where ``0`` denotes "no change"
            and ``0.5`` denotes "half of the axis size".
                * If ``None`` then equivalent to ``0.0`` unless `translate_px` has a value other than ``None``.
                * If a single number, then that value will be used for all images.
                * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``.
                  That sampled fraction value will be used identically for both x- and y-axis.
                * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``.
                  Each of these keys can have the same values as described above.
                  Using a dictionary allows to set different values for the two axis and sampling will then happen
                  *independently* per axis, resulting in samples that differ between the axes.
        translate_px (None, int, tuple of int or dict): Translation in pixels.
                * If ``None`` then equivalent to ``0`` unless `translate_percent` has a value other than ``None``.
                * If a single int, then that value will be used for all images.
                * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from
                  the discrete interval ``[a..b]``. That number will be used identically for both x- and y-axis.
                * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``.
                  Each of these keys can have the same values as described above.
                  Using a dictionary allows to set different values for the two axis and sampling will then happen
                  *independently* per axis, resulting in samples that differ between the axes.
        rotate (number or tuple of number): Rotation in degrees (**NOT** radians), i.e. expected value range is
            around ``[-360, 360]``. Rotation happens around the *center* of the image,
            not the top left corner as in some other frameworks.
                * If a number, then that value will be used for all images.
                * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``
                  and used as the rotation value.
        shear (number, tuple of number or dict): Shear in degrees (**NOT** radians), i.e. expected value range is
            around ``[-360, 360]``, with reasonable values being in the range of ``[-45, 45]``.
                * If a number, then that value will be used for all images as
                  the shear on the x-axis (no shear on the y-axis will be done).
                * If a tuple ``(a, b)``, then two value will be uniformly sampled per image
                  from the interval ``[a, b]`` and be used as the x- and y-shear value.
                * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``.
                  Each of these keys can have the same values as described above.
                  Using a dictionary allows to set different values for the two axis and sampling will then happen
                  *independently* per axis, resulting in samples that differ between the axes.
        interpolation (int): OpenCV interpolation flag.
        mask_interpolation (int): OpenCV interpolation flag.
        cval (number or sequence of number): The constant value to use when filling in newly created pixels.
            (E.g. translating by 1px to the right will create a new 1px-wide column of pixels
            on the left of the image).
            The value is only used when `mode=constant`. The expected value range is ``[0, 255]`` for ``uint8`` images.
        cval_mask (number or tuple of number): Same as cval but only for masks.
        mode (int): OpenCV border flag.
        fit_output (bool): If True, the image plane size and position will be adjusted to tightly capture
            the whole image after affine transformation (`translate_percent` and `translate_px` are ignored).
            Otherwise (``False``),  parts of the transformed image may end up outside the image plane.
            Fitting the output shape can be useful to avoid corners of the image being outside the image plane
            after applying rotations. Default: False
        keep_ratio (bool): When True, the original aspect ratio will be kept when the random scale is applied.
                           Default: False.
        rotate_method (str): rotation method used for the bounding boxes. Should be one of "largest_box" or
            "ellipse"[1].
            Default: "largest_box"
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, keypoints, bboxes

    Image types:
        uint8, float32

    Reference:
        [1] https://arxiv.org/abs/2109.13488
    """

    def __init__(
        self,
        scale: Optional[Union[float, Sequence[float], dict]] = None,
        translate_percent: Optional[Union[float, Sequence[float], dict]] = None,
        translate_px: Optional[Union[int, Sequence[int], dict]] = None,
        rotate: Optional[Union[float, Sequence[float]]] = None,
        shear: Optional[Union[float, Sequence[float], dict]] = None,
        interpolation: int = cv2.INTER_LINEAR,
        mask_interpolation: int = cv2.INTER_NEAREST,
        cval: Union[int, float, Sequence[int], Sequence[float]] = 0,
        cval_mask: Union[int, float, Sequence[int], Sequence[float]] = 0,
        mode: int = cv2.BORDER_CONSTANT,
        fit_output: bool = False,
        keep_ratio: bool = False,
        rotate_method: str = "largest_box",
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super().__init__(always_apply=always_apply, p=p)

        params = [scale, translate_percent, translate_px, rotate, shear]
        if all([p is None for p in params]):
            scale = {"x": (0.9, 1.1), "y": (0.9, 1.1)}
            translate_percent = {"x": (-0.1, 0.1), "y": (-0.1, 0.1)}
            rotate = (-15, 15)
            shear = {"x": (-10, 10), "y": (-10, 10)}
        else:
            scale = scale if scale is not None else 1.0
            rotate = rotate if rotate is not None else 0.0
            shear = shear if shear is not None else 0.0

        self.interpolation = interpolation
        self.mask_interpolation = mask_interpolation
        self.cval = cval
        self.cval_mask = cval_mask
        self.mode = mode
        self.scale = self._handle_dict_arg(scale, "scale")
        self.translate_percent, self.translate_px = self._handle_translate_arg(translate_px, translate_percent)
        self.rotate = to_tuple(rotate, rotate)
        self.fit_output = fit_output
        self.shear = self._handle_dict_arg(shear, "shear")
        self.keep_ratio = keep_ratio
        self.rotate_method = rotate_method

        if self.keep_ratio and self.scale["x"] != self.scale["y"]:
            raise ValueError(
                "When keep_ratio is True, the x and y scale range should be identical. got {}".format(self.scale)
            )

    def get_transform_init_args_names(self):
        return (
            "interpolation",
            "mask_interpolation",
            "cval",
            "mode",
            "scale",
            "translate_percent",
            "translate_px",
            "rotate",
            "fit_output",
            "shear",
            "cval_mask",
            "keep_ratio",
            "rotate_method",
        )

    @staticmethod
    def _handle_dict_arg(val: Union[float, Sequence[float], dict], name: str, default: float = 1.0):
        if isinstance(val, dict):
            if "x" not in val and "y" not in val:
                raise ValueError(
                    f'Expected {name} dictionary to contain at least key "x" or ' 'key "y". Found neither of them.'
                )
            x = val.get("x", default)
            y = val.get("y", default)
            return {"x": to_tuple(x, x), "y": to_tuple(y, y)}
        return {"x": to_tuple(val, val), "y": to_tuple(val, val)}

    @classmethod
    def _handle_translate_arg(
        cls,
        translate_px: Optional[Union[float, Sequence[float], dict]],
        translate_percent: Optional[Union[float, Sequence[float], dict]],
    ):
        if translate_percent is None and translate_px is None:
            translate_px = 0

        if translate_percent is not None and translate_px is not None:
            raise ValueError(
                "Expected either translate_percent or translate_px to be " "provided, " "but neither of them was."
            )

        if translate_percent is not None:
            # translate by percent
            return cls._handle_dict_arg(translate_percent, "translate_percent", default=0.0), translate_px

        if translate_px is None:
            raise ValueError("translate_px is None.")
        # translate by pixels
        return translate_percent, cls._handle_dict_arg(translate_px, "translate_px")

    def apply(
        self,
        img: np.ndarray,
        matrix: skimage.transform.ProjectiveTransform = None,
        output_shape: Sequence[int] = (),
        **params
    ) -> np.ndarray:
        return F.warp_affine(
            img,
            matrix,
            interpolation=self.interpolation,
            cval=self.cval,
            mode=self.mode,
            output_shape=output_shape,
        )

    def apply_to_mask(
        self,
        img: np.ndarray,
        matrix: skimage.transform.ProjectiveTransform = None,
        output_shape: Sequence[int] = (),
        **params
    ) -> np.ndarray:
        return F.warp_affine(
            img,
            matrix,
            interpolation=self.mask_interpolation,
            cval=self.cval_mask,
            mode=self.mode,
            output_shape=output_shape,
        )

    def apply_to_bbox(
        self,
        bbox: BoxInternalType,
        matrix: skimage.transform.ProjectiveTransform = None,
        rows: int = 0,
        cols: int = 0,
        output_shape: Sequence[int] = (),
        **params
    ) -> BoxInternalType:
        return F.bbox_affine(bbox, matrix, self.rotate_method, rows, cols, output_shape)

    def apply_to_keypoint(
        self,
        keypoint: KeypointInternalType,
        matrix: Optional[skimage.transform.ProjectiveTransform] = None,
        scale: Optional[dict] = None,
        **params
    ) -> KeypointInternalType:
        assert scale is not None and matrix is not None
        return F.keypoint_affine(keypoint, matrix=matrix, scale=scale)

    @property
    def targets_as_params(self):
        return ["image"]

    def get_params_dependent_on_targets(self, params: dict) -> dict:
        h, w = params["image"].shape[:2]

        translate: Dict[str, Union[int, float]]
        if self.translate_px is not None:
            translate = {key: random.randint(*value) for key, value in self.translate_px.items()}
        elif self.translate_percent is not None:
            translate = {key: random.uniform(*value) for key, value in self.translate_percent.items()}
            translate["x"] = translate["x"] * w
            translate["y"] = translate["y"] * h
        else:
            translate = {"x": 0, "y": 0}

        # Look to issue https://github.com/albumentations-team/albumentations/issues/1079
        shear = {key: -random.uniform(*value) for key, value in self.shear.items()}
        scale = {key: random.uniform(*value) for key, value in self.scale.items()}
        if self.keep_ratio:
            scale["y"] = scale["x"]

        # Look to issue https://github.com/albumentations-team/albumentations/issues/1079
        rotate = -random.uniform(*self.rotate)

        # for images we use additional shifts of (0.5, 0.5) as otherwise
        # we get an ugly black border for 90deg rotations
        shift_x = w / 2 - 0.5
        shift_y = h / 2 - 0.5

        matrix_to_topleft = skimage.transform.SimilarityTransform(translation=[-shift_x, -shift_y])
        matrix_shear_y_rot = skimage.transform.AffineTransform(rotation=-np.pi / 2)
        matrix_shear_y = skimage.transform.AffineTransform(shear=np.deg2rad(shear["y"]))
        matrix_shear_y_rot_inv = skimage.transform.AffineTransform(rotation=np.pi / 2)
        matrix_transforms = skimage.transform.AffineTransform(
            scale=(scale["x"], scale["y"]),
            translation=(translate["x"], translate["y"]),
            rotation=np.deg2rad(rotate),
            shear=np.deg2rad(shear["x"]),
        )
        matrix_to_center = skimage.transform.SimilarityTransform(translation=[shift_x, shift_y])
        matrix = (
            matrix_to_topleft
            + matrix_shear_y_rot
            + matrix_shear_y
            + matrix_shear_y_rot_inv
            + matrix_transforms
            + matrix_to_center
        )
        if self.fit_output:
            matrix, output_shape = self._compute_affine_warp_output_shape(matrix, params["image"].shape)
        else:
            output_shape = params["image"].shape

        return {
            "rotate": rotate,
            "scale": scale,
            "matrix": matrix,
            "output_shape": output_shape,
        }

    @staticmethod
    def _compute_affine_warp_output_shape(
        matrix: skimage.transform.ProjectiveTransform, input_shape: Sequence[int]
    ) -> Tuple[skimage.transform.ProjectiveTransform, Sequence[int]]:
        height, width = input_shape[:2]

        if height == 0 or width == 0:
            return matrix, input_shape

        # determine shape of output image
        corners = np.array([[0, 0], [0, height - 1], [width - 1, height - 1], [width - 1, 0]])
        corners = matrix(corners)
        minc = corners[:, 0].min()
        minr = corners[:, 1].min()
        maxc = corners[:, 0].max()
        maxr = corners[:, 1].max()
        out_height = maxr - minr + 1
        out_width = maxc - minc + 1
        if len(input_shape) == 3:
            output_shape = np.ceil((out_height, out_width, input_shape[2]))
        else:
            output_shape = np.ceil((out_height, out_width))
        output_shape_tuple = tuple([int(v) for v in output_shape.tolist()])
        # fit output image in new shape
        translation = (-minc, -minr)
        matrix_to_fit = skimage.transform.SimilarityTransform(translation=translation)
        matrix = matrix + matrix_to_fit
        return matrix, output_shape_tuple


class PiecewiseAffine(DualTransform):
    """Apply affine transformations that differ between local neighbourhoods.
    This augmentation places a regular grid of points on an image and randomly moves the neighbourhood of these point
    around via affine transformations. This leads to local distortions.

    This is mostly a wrapper around scikit-image's ``PiecewiseAffine``.
    See also ``Affine`` for a similar technique.

    Note:
        This augmenter is very slow. Try to use ``ElasticTransformation`` instead, which is at least 10x faster.

    Note:
        For coordinate-based inputs (keypoints, bounding boxes, polygons, ...),
        this augmenter still has to perform an image-based augmentation,
        which will make it significantly slower and not fully correct for such inputs than other transforms.

    Args:
        scale (float, tuple of float): Each point on the regular grid is moved around via a normal distribution.
            This scale factor is equivalent to the normal distribution's sigma.
            Note that the jitter (how far each point is moved in which direction) is multiplied by the height/width of
            the image if ``absolute_scale=False`` (default), so this scale can be the same for different sized images.
            Recommended values are in the range ``0.01`` to ``0.05`` (weak to strong augmentations).
                * If a single ``float``, then that value will always be used as the scale.
                * If a tuple ``(a, b)`` of ``float`` s, then a random value will
                  be uniformly sampled per image from the interval ``[a, b]``.
        nb_rows (int, tuple of int): Number of rows of points that the regular grid should have.
            Must be at least ``2``. For large images, you might want to pick a higher value than ``4``.
            You might have to then adjust scale to lower values.
                * If a single ``int``, then that value will always be used as the number of rows.
                * If a tuple ``(a, b)``, then a value from the discrete interval
                  ``[a..b]`` will be uniformly sampled per image.
        nb_cols (int, tuple of int): Number of columns. Analogous to `nb_rows`.
        interpolation (int): The order of interpolation. The order has to be in the range 0-5:
             - 0: Nearest-neighbor
             - 1: Bi-linear (default)
             - 2: Bi-quadratic
             - 3: Bi-cubic
             - 4: Bi-quartic
             - 5: Bi-quintic
        mask_interpolation (int): same as interpolation but for mask.
        cval (number): The constant value to use when filling in newly created pixels.
        cval_mask (number): Same as cval but only for masks.
        mode (str): {'constant', 'edge', 'symmetric', 'reflect', 'wrap'}, optional
            Points outside the boundaries of the input are filled according
            to the given mode.  Modes match the behaviour of `numpy.pad`.
        absolute_scale (bool): Take `scale` as an absolute value rather than a relative value.
        keypoints_threshold (float): Used as threshold in conversion from distance maps to keypoints.
            The search for keypoints works by searching for the
            argmin (non-inverted) or argmax (inverted) in each channel. This
            parameters contains the maximum (non-inverted) or minimum (inverted) value to accept in order to view a hit
            as a keypoint. Use ``None`` to use no min/max. Default: 0.01

    Targets:
        image, mask, keypoints, bboxes

    Image types:
        uint8, float32

    """

    def __init__(
        self,
        scale: ScaleFloatType = (0.03, 0.05),
        nb_rows: Union[int, Sequence[int]] = 4,
        nb_cols: Union[int, Sequence[int]] = 4,
        interpolation: int = 1,
        mask_interpolation: int = 0,
        cval: int = 0,
        cval_mask: int = 0,
        mode: str = "constant",
        absolute_scale: bool = False,
        always_apply: bool = False,
        keypoints_threshold: float = 0.01,
        p: float = 0.5,
    ):
        super(PiecewiseAffine, self).__init__(always_apply, p)

        self.scale = to_tuple(scale, scale)
        self.nb_rows = to_tuple(nb_rows, nb_rows)
        self.nb_cols = to_tuple(nb_cols, nb_cols)
        self.interpolation = interpolation
        self.mask_interpolation = mask_interpolation
        self.cval = cval
        self.cval_mask = cval_mask
        self.mode = mode
        self.absolute_scale = absolute_scale
        self.keypoints_threshold = keypoints_threshold

    def get_transform_init_args_names(self):
        return (
            "scale",
            "nb_rows",
            "nb_cols",
            "interpolation",
            "mask_interpolation",
            "cval",
            "cval_mask",
            "mode",
            "absolute_scale",
            "keypoints_threshold",
        )

    @property
    def targets_as_params(self):
        return ["image"]

    def get_params_dependent_on_targets(self, params) -> dict:
        h, w = params["image"].shape[:2]

        nb_rows = np.clip(random.randint(*self.nb_rows), 2, None)
        nb_cols = np.clip(random.randint(*self.nb_cols), 2, None)
        nb_cells = nb_cols * nb_rows
        scale = random.uniform(*self.scale)

        jitter: np.ndarray = random_utils.normal(0, scale, (nb_cells, 2))
        if not np.any(jitter > 0):
            for i in range(10):  # See: https://github.com/albumentations-team/albumentations/issues/1442
                jitter = random_utils.normal(0, scale, (nb_cells, 2))
                if np.any(jitter > 0):
                    break
            if not np.any(jitter > 0):
                return {"matrix": None}

        y = np.linspace(0, h, nb_rows)
        x = np.linspace(0, w, nb_cols)

        # (H, W) and (H, W) for H=rows, W=cols
        xx_src, yy_src = np.meshgrid(x, y)

        # (1, HW, 2) => (HW, 2) for H=rows, W=cols
        points_src = np.dstack([yy_src.flat, xx_src.flat])[0]

        if self.absolute_scale:
            jitter[:, 0] = jitter[:, 0] / h if h > 0 else 0.0
            jitter[:, 1] = jitter[:, 1] / w if w > 0 else 0.0

        jitter[:, 0] = jitter[:, 0] * h
        jitter[:, 1] = jitter[:, 1] * w

        points_dest = np.copy(points_src)
        points_dest[:, 0] = points_dest[:, 0] + jitter[:, 0]
        points_dest[:, 1] = points_dest[:, 1] + jitter[:, 1]

        # Restrict all destination points to be inside the image plane.
        # This is necessary, as otherwise keypoints could be augmented
        # outside of the image plane and these would be replaced by
        # (-1, -1), which would not conform with the behaviour of the other augmenters.
        points_dest[:, 0] = np.clip(points_dest[:, 0], 0, h - 1)
        points_dest[:, 1] = np.clip(points_dest[:, 1], 0, w - 1)

        matrix = skimage.transform.PiecewiseAffineTransform()
        matrix.estimate(points_src[:, ::-1], points_dest[:, ::-1])

        return {
            "matrix": matrix,
        }

    def apply(
        self, img: np.ndarray, matrix: Optional[skimage.transform.PiecewiseAffineTransform] = None, **params
    ) -> np.ndarray:
        return F.piecewise_affine(img, matrix, self.interpolation, self.mode, self.cval)

    def apply_to_mask(
        self, img: np.ndarray, matrix: Optional[skimage.transform.PiecewiseAffineTransform] = None, **params
    ) -> np.ndarray:
        return F.piecewise_affine(img, matrix, self.mask_interpolation, self.mode, self.cval_mask)

    def apply_to_bbox(
        self,
        bbox: BoxInternalType,
        rows: int = 0,
        cols: int = 0,
        matrix: Optional[skimage.transform.PiecewiseAffineTransform] = None,
        **params
    ) -> BoxInternalType:
        return F.bbox_piecewise_affine(bbox, matrix, rows, cols, self.keypoints_threshold)

    def apply_to_keypoint(
        self,
        keypoint: KeypointInternalType,
        rows: int = 0,
        cols: int = 0,
        matrix: Optional[skimage.transform.PiecewiseAffineTransform] = None,
        **params
    ):
        return F.keypoint_piecewise_affine(keypoint, matrix, rows, cols, self.keypoints_threshold)


class PadIfNeeded(DualTransform):
    """Pad side of the image / max if side is less than desired number.

    Args:
        min_height (int): minimal result image height.
        min_width (int): minimal result image width.
        pad_height_divisor (int): if not None, ensures image height is dividable by value of this argument.
        pad_width_divisor (int): if not None, ensures image width is dividable by value of this argument.
        position (Union[str, PositionType]): Position of the image. should be PositionType.CENTER or
            PositionType.TOP_LEFT or PositionType.TOP_RIGHT or PositionType.BOTTOM_LEFT or PositionType.BOTTOM_RIGHT.
            or PositionType.RANDOM. Default: PositionType.CENTER.
        border_mode (OpenCV flag): OpenCV border mode.
        value (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
        mask_value (int, float,
                    list of int,
                    list of float): padding value for mask if border_mode is cv2.BORDER_CONSTANT.
        p (float): probability of applying the transform. Default: 1.0.

    Targets:
        image, mask, bbox, keypoints

    Image types:
        uint8, float32
    """

    class PositionType(Enum):
        CENTER = "center"
        TOP_LEFT = "top_left"
        TOP_RIGHT = "top_right"
        BOTTOM_LEFT = "bottom_left"
        BOTTOM_RIGHT = "bottom_right"
        RANDOM = "random"

    def __init__(
        self,
        min_height: Optional[int] = 1024,
        min_width: Optional[int] = 1024,
        pad_height_divisor: Optional[int] = None,
        pad_width_divisor: Optional[int] = None,
        position: Union[PositionType, str] = PositionType.CENTER,
        border_mode: int = cv2.BORDER_REFLECT_101,
        value: Optional[ImageColorType] = None,
        mask_value: Optional[ImageColorType] = None,
        always_apply: bool = False,
        p: float = 1.0,
    ):
        if (min_height is None) == (pad_height_divisor is None):
            raise ValueError("Only one of 'min_height' and 'pad_height_divisor' parameters must be set")

        if (min_width is None) == (pad_width_divisor is None):
            raise ValueError("Only one of 'min_width' and 'pad_width_divisor' parameters must be set")

        super(PadIfNeeded, self).__init__(always_apply, p)
        self.min_height = min_height
        self.min_width = min_width
        self.pad_width_divisor = pad_width_divisor
        self.pad_height_divisor = pad_height_divisor
        self.position = PadIfNeeded.PositionType(position)
        self.border_mode = border_mode
        self.value = value
        self.mask_value = mask_value

    def update_params(self, params, **kwargs):
        params = super(PadIfNeeded, self).update_params(params, **kwargs)
        rows = params["rows"]
        cols = params["cols"]

        if self.min_height is not None:
            if rows < self.min_height:
                h_pad_top = int((self.min_height - rows) / 2.0)
                h_pad_bottom = self.min_height - rows - h_pad_top
            else:
                h_pad_top = 0
                h_pad_bottom = 0
        else:
            pad_remained = rows % self.pad_height_divisor
            pad_rows = self.pad_height_divisor - pad_remained if pad_remained > 0 else 0

            h_pad_top = pad_rows // 2
            h_pad_bottom = pad_rows - h_pad_top

        if self.min_width is not None:
            if cols < self.min_width:
                w_pad_left = int((self.min_width - cols) / 2.0)
                w_pad_right = self.min_width - cols - w_pad_left
            else:
                w_pad_left = 0
                w_pad_right = 0
        else:
            pad_remainder = cols % self.pad_width_divisor
            pad_cols = self.pad_width_divisor - pad_remainder if pad_remainder > 0 else 0

            w_pad_left = pad_cols // 2
            w_pad_right = pad_cols - w_pad_left

        h_pad_top, h_pad_bottom, w_pad_left, w_pad_right = self.__update_position_params(
            h_top=h_pad_top, h_bottom=h_pad_bottom, w_left=w_pad_left, w_right=w_pad_right
        )

        params.update(
            {
                "pad_top": h_pad_top,
                "pad_bottom": h_pad_bottom,
                "pad_left": w_pad_left,
                "pad_right": w_pad_right,
            }
        )
        return params

    def apply(
        self, img: np.ndarray, pad_top: int = 0, pad_bottom: int = 0, pad_left: int = 0, pad_right: int = 0, **params
    ) -> np.ndarray:
        return F.pad_with_params(
            img,
            pad_top,
            pad_bottom,
            pad_left,
            pad_right,
            border_mode=self.border_mode,
            value=self.value,
        )

    def apply_to_mask(
        self, img: np.ndarray, pad_top: int = 0, pad_bottom: int = 0, pad_left: int = 0, pad_right: int = 0, **params
    ) -> np.ndarray:
        return F.pad_with_params(
            img,
            pad_top,
            pad_bottom,
            pad_left,
            pad_right,
            border_mode=self.border_mode,
            value=self.mask_value,
        )

    def apply_to_bbox(
        self,
        bbox: BoxInternalType,
        pad_top: int = 0,
        pad_bottom: int = 0,
        pad_left: int = 0,
        pad_right: int = 0,
        rows: int = 0,
        cols: int = 0,
        **params
    ) -> BoxInternalType:
        x_min, y_min, x_max, y_max = denormalize_bbox(bbox, rows, cols)[:4]
        bbox = x_min + pad_left, y_min + pad_top, x_max + pad_left, y_max + pad_top
        return normalize_bbox(bbox, rows + pad_top + pad_bottom, cols + pad_left + pad_right)

    def apply_to_keypoint(
        self,
        keypoint: KeypointInternalType,
        pad_top: int = 0,
        pad_bottom: int = 0,
        pad_left: int = 0,
        pad_right: int = 0,
        **params
    ) -> KeypointInternalType:
        x, y, angle, scale = keypoint[:4]
        return x + pad_left, y + pad_top, angle, scale

    def get_transform_init_args_names(self):
        return (
            "min_height",
            "min_width",
            "pad_height_divisor",
            "pad_width_divisor",
            "border_mode",
            "value",
            "mask_value",
        )

    def __update_position_params(
        self, h_top: int, h_bottom: int, w_left: int, w_right: int
    ) -> Tuple[int, int, int, int]:
        if self.position == PadIfNeeded.PositionType.TOP_LEFT:
            h_bottom += h_top
            w_right += w_left
            h_top = 0
            w_left = 0

        elif self.position == PadIfNeeded.PositionType.TOP_RIGHT:
            h_bottom += h_top
            w_left += w_right
            h_top = 0
            w_right = 0

        elif self.position == PadIfNeeded.PositionType.BOTTOM_LEFT:
            h_top += h_bottom
            w_right += w_left
            h_bottom = 0
            w_left = 0

        elif self.position == PadIfNeeded.PositionType.BOTTOM_RIGHT:
            h_top += h_bottom
            w_left += w_right
            h_bottom = 0
            w_right = 0

        elif self.position == PadIfNeeded.PositionType.RANDOM:
            h_pad = h_top + h_bottom
            w_pad = w_left + w_right
            h_top = random.randint(0, h_pad)
            h_bottom = h_pad - h_top
            w_left = random.randint(0, w_pad)
            w_right = w_pad - w_left

        return h_top, h_bottom, w_left, w_right


class VerticalFlip(DualTransform):
    """Flip the input vertically around the x-axis.

    Args:
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def apply(self, img: np.ndarray, **params) -> np.ndarray:
        return F.vflip(img)

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        return F.bbox_vflip(bbox, **params)

    def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
        return F.keypoint_vflip(keypoint, **params)

    def get_transform_init_args_names(self):
        return ()


class HorizontalFlip(DualTransform):
    """Flip the input horizontally around the y-axis.

    Args:
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def apply(self, img: np.ndarray, **params) -> np.ndarray:
        if img.ndim == 3 and img.shape[2] > 1 and img.dtype == np.uint8:
            # Opencv is faster than numpy only in case of
            # non-gray scale 8bits images
            return F.hflip_cv2(img)

        return F.hflip(img)

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        return F.bbox_hflip(bbox, **params)

    def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
        return F.keypoint_hflip(keypoint, **params)

    def get_transform_init_args_names(self):
        return ()


class Flip(DualTransform):
    """Flip the input either horizontally, vertically or both horizontally and vertically.

    Args:
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def apply(self, img: np.ndarray, d: int = 0, **params) -> np.ndarray:
        """Args:
        d (int): code that specifies how to flip the input. 0 for vertical flipping, 1 for horizontal flipping,
                -1 for both vertical and horizontal flipping (which is also could be seen as rotating the input by
                180 degrees).
        """
        return F.random_flip(img, d)

    def get_params(self):
        # Random int in the range [-1, 1]
        return {"d": random.randint(-1, 1)}

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        return F.bbox_flip(bbox, **params)

    def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
        return F.keypoint_flip(keypoint, **params)

    def get_transform_init_args_names(self):
        return ()


class Transpose(DualTransform):
    """Transpose the input by swapping rows and columns.

    Args:
        p (float): probability of applying the transform. Default: 0.5.

    Targets:
        image, mask, bboxes, keypoints

    Image types:
        uint8, float32
    """

    def apply(self, img: np.ndarray, **params) -> np.ndarray:
        return F.transpose(img)

    def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
        return F.bbox_transpose(bbox, 0, **params)

    def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType:
        return F.keypoint_transpose(keypoint)

    def get_transform_init_args_names(self):
        return ()


class OpticalDistortion(DualTransform):
    """
    Args:
        distort_limit (float, (float, float)): If distort_limit is a single float, the range
            will be (-distort_limit, distort_limit). Default: (-0.05, 0.05).
        shift_limit (float, (float, float))): If shift_limit is a single float, the range
            will be (-shift_limit, shift_limit). Default: (-0.05, 0.05).
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
            cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
            Default: cv2.BORDER_REFLECT_101
        value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
        mask_value (int, float,
                    list of ints,
                    list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.

    Targets:
        image, mask, bbox

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        distort_limit: ScaleFloatType = 0.05,
        shift_limit: ScaleFloatType = 0.05,
        interpolation: int = cv2.INTER_LINEAR,
        border_mode: int = cv2.BORDER_REFLECT_101,
        value: Optional[ImageColorType] = None,
        mask_value: Optional[ImageColorType] = None,
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super(OpticalDistortion, self).__init__(always_apply, p)
        self.shift_limit = to_tuple(shift_limit)
        self.distort_limit = to_tuple(distort_limit)
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.value = value
        self.mask_value = mask_value

    def apply(
        self, img: np.ndarray, k: int = 0, dx: int = 0, dy: int = 0, interpolation: int = cv2.INTER_LINEAR, **params
    ) -> np.ndarray:
        return F.optical_distortion(img, k, dx, dy, interpolation, self.border_mode, self.value)

    def apply_to_mask(self, img: np.ndarray, k: int = 0, dx: int = 0, dy: int = 0, **params) -> np.ndarray:
        return F.optical_distortion(img, k, dx, dy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)

    def apply_to_bbox(self, bbox: BoxInternalType, k: int = 0, dx: int = 0, dy: int = 0, **params) -> BoxInternalType:
        rows, cols = params["rows"], params["cols"]
        mask = np.zeros((rows, cols), dtype=np.uint8)
        bbox_denorm = F.denormalize_bbox(bbox, rows, cols)
        x_min, y_min, x_max, y_max = bbox_denorm[:4]
        x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
        mask[y_min:y_max, x_min:x_max] = 1
        mask = F.optical_distortion(mask, k, dx, dy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)
        bbox_returned = bbox_from_mask(mask)
        bbox_returned = F.normalize_bbox(bbox_returned, rows, cols)
        return bbox_returned

    def get_params(self):
        return {
            "k": random.uniform(self.distort_limit[0], self.distort_limit[1]),
            "dx": round(random.uniform(self.shift_limit[0], self.shift_limit[1])),
            "dy": round(random.uniform(self.shift_limit[0], self.shift_limit[1])),
        }

    def get_transform_init_args_names(self):
        return (
            "distort_limit",
            "shift_limit",
            "interpolation",
            "border_mode",
            "value",
            "mask_value",
        )


class GridDistortion(DualTransform):
    """
    Args:
        num_steps (int): count of grid cells on each side.
        distort_limit (float, (float, float)): If distort_limit is a single float, the range
            will be (-distort_limit, distort_limit). Default: (-0.03, 0.03).
        interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
            Default: cv2.INTER_LINEAR.
        border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of:
            cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101.
            Default: cv2.BORDER_REFLECT_101
        value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT.
        mask_value (int, float,
                    list of ints,
                    list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks.
        normalized (bool): if true, distortion will be normalized to do not go outside the image. Default: False
            See for more information: https://github.com/albumentations-team/albumentations/pull/722

    Targets:
        image, mask

    Image types:
        uint8, float32
    """

    def __init__(
        self,
        num_steps: int = 5,
        distort_limit: ScaleFloatType = 0.3,
        interpolation: int = cv2.INTER_LINEAR,
        border_mode: int = cv2.BORDER_REFLECT_101,
        value: Optional[ImageColorType] = None,
        mask_value: Optional[ImageColorType] = None,
        normalized: bool = False,
        always_apply: bool = False,
        p: float = 0.5,
    ):
        super(GridDistortion, self).__init__(always_apply, p)
        self.num_steps = num_steps
        self.distort_limit = to_tuple(distort_limit)
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.value = value
        self.mask_value = mask_value
        self.normalized = normalized

    def apply(
        self, img: np.ndarray, stepsx: Tuple = (), stepsy: Tuple = (), interpolation: int = cv2.INTER_LINEAR, **params
    ) -> np.ndarray:
        return F.grid_distortion(img, self.num_steps, stepsx, stepsy, interpolation, self.border_mode, self.value)

    def apply_to_mask(self, img: np.ndarray, stepsx: Tuple = (), stepsy: Tuple = (), **params) -> np.ndarray:
        return F.grid_distortion(
            img, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value
        )

    def apply_to_bbox(self, bbox: BoxInternalType, stepsx: Tuple = (), stepsy: Tuple = (), **params) -> BoxInternalType:
        rows, cols = params["rows"], params["cols"]
        mask = np.zeros((rows, cols), dtype=np.uint8)
        bbox_denorm = F.denormalize_bbox(bbox, rows, cols)
        x_min, y_min, x_max, y_max = bbox_denorm[:4]
        x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
        mask[y_min:y_max, x_min:x_max] = 1
        mask = F.grid_distortion(
            mask, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value
        )
        bbox_returned = bbox_from_mask(mask)
        bbox_returned = F.normalize_bbox(bbox_returned, rows, cols)
        return bbox_returned

    def _normalize(self, h, w, xsteps, ysteps):
        # compensate for smaller last steps in source image.
        x_step = w // self.num_steps
        last_x_step = min(w, ((self.num_steps + 1) * x_step)) - (self.num_steps * x_step)
        xsteps[-1] *= last_x_step / x_step

        y_step = h // self.num_steps
        last_y_step = min(h, ((self.num_steps + 1) * y_step)) - (self.num_steps * y_step)
        ysteps[-1] *= last_y_step / y_step

        # now normalize such that distortion never leaves image bounds.
        tx = w / math.floor(w / self.num_steps)
        ty = h / math.floor(h / self.num_steps)
        xsteps = np.array(xsteps) * (tx / np.sum(xsteps))
        ysteps = np.array(ysteps) * (ty / np.sum(ysteps))

        return {"stepsx": xsteps, "stepsy": ysteps}

    @property
    def targets_as_params(self):
        return ["image"]

    def get_params_dependent_on_targets(self, params):
        h, w = params["image"].shape[:2]

        stepsx = [1 + random.uniform(self.distort_limit[0], self.distort_limit[1]) for _ in range(self.num_steps + 1)]
        stepsy = [1 + random.uniform(self.distort_limit[0], self.distort_limit[1]) for _ in range(self.num_steps + 1)]

        if self.normalized:
            return self._normalize(h, w, stepsx, stepsy)

        return {"stepsx": stepsx, "stepsy": stepsy}

    def get_transform_init_args_names(self):
        return "num_steps", "distort_limit", "interpolation", "border_mode", "value", "mask_value", "normalized"