File size: 10,316 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from typing import Optional, Sequence, Tuple

import cv2
import numpy as np

from custom_albumentations.augmentations.utils import (
    _maybe_process_in_chunks,
    preserve_channel_dim,
)

from ...core.bbox_utils import denormalize_bbox, normalize_bbox
from ...core.transforms_interface import BoxInternalType, KeypointInternalType
from ..geometric import functional as FGeometric

__all__ = [
    "get_random_crop_coords",
    "random_crop",
    "crop_bbox_by_coords",
    "bbox_random_crop",
    "crop_keypoint_by_coords",
    "keypoint_random_crop",
    "get_center_crop_coords",
    "center_crop",
    "bbox_center_crop",
    "keypoint_center_crop",
    "crop",
    "bbox_crop",
    "clamping_crop",
    "crop_and_pad",
    "crop_and_pad_bbox",
    "crop_and_pad_keypoint",
]


def get_random_crop_coords(height: int, width: int, crop_height: int, crop_width: int, h_start: float, w_start: float):
    # h_start is [0, 1) and should map to [0, (height - crop_height)]  (note inclusive)
    # This is conceptually equivalent to mapping onto `range(0, (height - crop_height + 1))`
    # See: https://github.com/albumentations-team/albumentations/pull/1080
    y1 = int((height - crop_height + 1) * h_start)
    y2 = y1 + crop_height
    x1 = int((width - crop_width + 1) * w_start)
    x2 = x1 + crop_width
    return x1, y1, x2, y2


def random_crop(img: np.ndarray, crop_height: int, crop_width: int, h_start: float, w_start: float):
    height, width = img.shape[:2]
    if height < crop_height or width < crop_width:
        raise ValueError(
            "Requested crop size ({crop_height}, {crop_width}) is "
            "larger than the image size ({height}, {width})".format(
                crop_height=crop_height, crop_width=crop_width, height=height, width=width
            )
        )
    x1, y1, x2, y2 = get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start)
    img = img[y1:y2, x1:x2]
    return img


def crop_bbox_by_coords(
    bbox: BoxInternalType,
    crop_coords: Tuple[int, int, int, int],
    crop_height: int,
    crop_width: int,
    rows: int,
    cols: int,
):
    """Crop a bounding box using the provided coordinates of bottom-left and top-right corners in pixels and the
    required height and width of the crop.

    Args:
        bbox (tuple): A cropped box `(x_min, y_min, x_max, y_max)`.
        crop_coords (tuple): Crop coordinates `(x1, y1, x2, y2)`.
        crop_height (int):
        crop_width (int):
        rows (int): Image rows.
        cols (int): Image cols.

    Returns:
        tuple: A cropped bounding box `(x_min, y_min, x_max, y_max)`.

    """
    bbox = denormalize_bbox(bbox, rows, cols)
    x_min, y_min, x_max, y_max = bbox[:4]
    x1, y1, _, _ = crop_coords
    cropped_bbox = x_min - x1, y_min - y1, x_max - x1, y_max - y1
    return normalize_bbox(cropped_bbox, crop_height, crop_width)


def bbox_random_crop(
    bbox: BoxInternalType, crop_height: int, crop_width: int, h_start: float, w_start: float, rows: int, cols: int
):
    crop_coords = get_random_crop_coords(rows, cols, crop_height, crop_width, h_start, w_start)
    return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols)


def crop_keypoint_by_coords(
    keypoint: KeypointInternalType, crop_coords: Tuple[int, int, int, int]
):  # skipcq: PYL-W0613
    """Crop a keypoint using the provided coordinates of bottom-left and top-right corners in pixels and the
    required height and width of the crop.

    Args:
        keypoint (tuple): A keypoint `(x, y, angle, scale)`.
        crop_coords (tuple): Crop box coords `(x1, x2, y1, y2)`.

    Returns:
        A keypoint `(x, y, angle, scale)`.

    """
    x, y, angle, scale = keypoint[:4]
    x1, y1, _, _ = crop_coords
    return x - x1, y - y1, angle, scale


def keypoint_random_crop(
    keypoint: KeypointInternalType,
    crop_height: int,
    crop_width: int,
    h_start: float,
    w_start: float,
    rows: int,
    cols: int,
):
    """Keypoint random crop.

    Args:
        keypoint: (tuple): A keypoint `(x, y, angle, scale)`.
        crop_height (int): Crop height.
        crop_width (int): Crop width.
        h_start (int): Crop height start.
        w_start (int): Crop width start.
        rows (int): Image height.
        cols (int): Image width.

    Returns:
        A keypoint `(x, y, angle, scale)`.

    """
    crop_coords = get_random_crop_coords(rows, cols, crop_height, crop_width, h_start, w_start)
    return crop_keypoint_by_coords(keypoint, crop_coords)


def get_center_crop_coords(height: int, width: int, crop_height: int, crop_width: int):
    y1 = (height - crop_height) // 2
    y2 = y1 + crop_height
    x1 = (width - crop_width) // 2
    x2 = x1 + crop_width
    return x1, y1, x2, y2


def center_crop(img: np.ndarray, crop_height: int, crop_width: int):
    height, width = img.shape[:2]
    if height < crop_height or width < crop_width:
        raise ValueError(
            "Requested crop size ({crop_height}, {crop_width}) is "
            "larger than the image size ({height}, {width})".format(
                crop_height=crop_height, crop_width=crop_width, height=height, width=width
            )
        )
    x1, y1, x2, y2 = get_center_crop_coords(height, width, crop_height, crop_width)
    img = img[y1:y2, x1:x2]
    return img


def bbox_center_crop(bbox: BoxInternalType, crop_height: int, crop_width: int, rows: int, cols: int):
    crop_coords = get_center_crop_coords(rows, cols, crop_height, crop_width)
    return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols)


def keypoint_center_crop(keypoint: KeypointInternalType, crop_height: int, crop_width: int, rows: int, cols: int):
    """Keypoint center crop.

    Args:
        keypoint (tuple): A keypoint `(x, y, angle, scale)`.
        crop_height (int): Crop height.
        crop_width (int): Crop width.
        rows (int): Image height.
        cols (int): Image width.

    Returns:
        tuple: A keypoint `(x, y, angle, scale)`.

    """
    crop_coords = get_center_crop_coords(rows, cols, crop_height, crop_width)
    return crop_keypoint_by_coords(keypoint, crop_coords)


def crop(img: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int):
    height, width = img.shape[:2]
    if x_max <= x_min or y_max <= y_min:
        raise ValueError(
            "We should have x_min < x_max and y_min < y_max. But we got"
            " (x_min = {x_min}, y_min = {y_min}, x_max = {x_max}, y_max = {y_max})".format(
                x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max
            )
        )

    if x_min < 0 or x_max > width or y_min < 0 or y_max > height:
        raise ValueError(
            "Values for crop should be non negative and equal or smaller than image sizes"
            "(x_min = {x_min}, y_min = {y_min}, x_max = {x_max}, y_max = {y_max}, "
            "height = {height}, width = {width})".format(
                x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, height=height, width=width
            )
        )

    return img[y_min:y_max, x_min:x_max]


def bbox_crop(bbox: BoxInternalType, x_min: int, y_min: int, x_max: int, y_max: int, rows: int, cols: int):
    """Crop a bounding box.

    Args:
        bbox (tuple): A bounding box `(x_min, y_min, x_max, y_max)`.
        x_min (int):
        y_min (int):
        x_max (int):
        y_max (int):
        rows (int): Image rows.
        cols (int): Image cols.

    Returns:
        tuple: A cropped bounding box `(x_min, y_min, x_max, y_max)`.

    """
    crop_coords = x_min, y_min, x_max, y_max
    crop_height = y_max - y_min
    crop_width = x_max - x_min
    return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols)


def clamping_crop(img: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int):
    h, w = img.shape[:2]
    if x_min < 0:
        x_min = 0
    if y_min < 0:
        y_min = 0
    if y_max >= h:
        y_max = h - 1
    if x_max >= w:
        x_max = w - 1
    return img[int(y_min) : int(y_max), int(x_min) : int(x_max)]


@preserve_channel_dim
def crop_and_pad(
    img: np.ndarray,
    crop_params: Optional[Sequence[int]],
    pad_params: Optional[Sequence[int]],
    pad_value: Optional[float],
    rows: int,
    cols: int,
    interpolation: int,
    pad_mode: int,
    keep_size: bool,
) -> np.ndarray:
    if crop_params is not None and any(i != 0 for i in crop_params):
        img = crop(img, *crop_params)
    if pad_params is not None and any(i != 0 for i in pad_params):
        img = FGeometric.pad_with_params(
            img, pad_params[0], pad_params[1], pad_params[2], pad_params[3], border_mode=pad_mode, value=pad_value
        )

    if keep_size:
        resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(cols, rows), interpolation=interpolation)
        img = resize_fn(img)

    return img


def crop_and_pad_bbox(
    bbox: BoxInternalType,
    crop_params: Optional[Sequence[int]],
    pad_params: Optional[Sequence[int]],
    rows,
    cols,
    result_rows,
    result_cols,
) -> BoxInternalType:
    x1, y1, x2, y2 = denormalize_bbox(bbox, rows, cols)[:4]

    if crop_params is not None:
        crop_x, crop_y = crop_params[:2]
        x1, y1, x2, y2 = x1 - crop_x, y1 - crop_y, x2 - crop_x, y2 - crop_y
    if pad_params is not None:
        top, bottom, left, right = pad_params
        x1, y1, x2, y2 = x1 + left, y1 + top, x2 + left, y2 + top

    return normalize_bbox((x1, y1, x2, y2), result_rows, result_cols)


def crop_and_pad_keypoint(
    keypoint: KeypointInternalType,
    crop_params: Optional[Sequence[int]],
    pad_params: Optional[Sequence[int]],
    rows: int,
    cols: int,
    result_rows: int,
    result_cols: int,
    keep_size: bool,
) -> KeypointInternalType:
    x, y, angle, scale = keypoint[:4]

    if crop_params is not None:
        crop_x1, crop_y1, crop_x2, crop_y2 = crop_params
        x, y = x - crop_x1, y - crop_y1
    if pad_params is not None:
        top, bottom, left, right = pad_params
        x, y = x + left, y + top

    if keep_size and (result_cols != cols or result_rows != rows):
        scale_x = cols / result_cols
        scale_y = rows / result_rows
        return FGeometric.keypoint_scale((x, y, angle, scale), scale_x, scale_y)

    return x, y, angle, scale