Spaces:
Configuration error
Configuration error
File size: 6,835 Bytes
8866644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from torch import Tensor
import folder_paths
from nodes import VAEEncode
import comfy.utils
from comfy.sd import VAE
from .utils import TimestepKeyframeGroup
from .control_sparsectrl import SparseMethod, SparseIndexMethod, SparseSettings, SparseSpreadMethod, PreprocSparseRGBWrapper
from .control import load_sparsectrl, load_controlnet, ControlNetAdvanced, SparseCtrlAdvanced
# node for SparseCtrl loading
class SparseCtrlLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
"use_motion": ("BOOLEAN", {"default": True}, ),
"motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"sparse_method": ("SPARSE_METHOD", ),
"tk_optional": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
/SparseCtrl"
def load_controlnet(self, sparsectrl_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None):
sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale)
sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
return (sparsectrl,)
class SparseCtrlMergedLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ),
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
"use_motion": ("BOOLEAN", {"default": True}, ),
"motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"sparse_method": ("SPARSE_METHOD", ),
"tk_optional": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
/SparseCtrl/experimental"
def load_controlnet(self, sparsectrl_name: str, control_net_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None):
sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name)
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale, merged=True)
# first, load normal controlnet
controlnet = load_controlnet(controlnet_path, timestep_keyframe=tk_optional)
# confirm that controlnet is ControlNetAdvanced
if controlnet is None or type(controlnet) != ControlNetAdvanced:
raise ValueError(f"controlnet_path must point to a normal ControlNet, but instead: {type(controlnet).__name__}")
# next, load sparsectrl, making sure to load motion portion
sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=SparseSettings.default())
# now, combine state dicts
new_state_dict = controlnet.control_model.state_dict()
for key, value in sparsectrl.control_model.motion_holder.motion_wrapper.state_dict().items():
new_state_dict[key] = value
# now, reload sparsectrl with real settings
sparsectrl = load_sparsectrl(sparsectrl_path, controlnet_data=new_state_dict, timestep_keyframe=tk_optional, sparse_settings=sparse_settings)
return (sparsectrl,)
class SparseIndexMethodNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"indexes": ("STRING", {"default": "0"}),
}
}
RETURN_TYPES = ("SPARSE_METHOD",)
FUNCTION = "get_method"
CATEGORY = "Adv-ControlNet ππ
π
π
/SparseCtrl"
def get_method(self, indexes: str):
idxs = []
unique_idxs = set()
# get indeces from string
str_idxs = [x.strip() for x in indexes.strip().split(",")]
for str_idx in str_idxs:
try:
idx = int(str_idx)
if idx in unique_idxs:
raise ValueError(f"'{idx}' is duplicated; indexes must be unique.")
idxs.append(idx)
unique_idxs.add(idx)
except ValueError:
raise ValueError(f"'{str_idx}' is not a valid integer index.")
if len(idxs) == 0:
raise ValueError(f"No indexes were listed in Sparse Index Method.")
return (SparseIndexMethod(idxs),)
class SparseSpreadMethodNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"spread": (SparseSpreadMethod.LIST,),
}
}
RETURN_TYPES = ("SPARSE_METHOD",)
FUNCTION = "get_method"
CATEGORY = "Adv-ControlNet ππ
π
π
/SparseCtrl"
def get_method(self, spread: str):
return (SparseSpreadMethod(spread=spread),)
class RgbSparseCtrlPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"vae": ("VAE", ),
"latent_size": ("LATENT", ),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("proc_IMAGE",)
FUNCTION = "preprocess_images"
CATEGORY = "Adv-ControlNet ππ
π
π
/SparseCtrl/preprocess"
def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor):
# first, resize image to match latents
image = image.movedim(-1,1)
image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center")
image = image.movedim(1,-1)
# then, vae encode
try:
image = vae.vae_encode_crop_pixels(image)
except Exception:
image = VAEEncode.vae_encode_crop_pixels(image)
encoded = vae.encode(image[:,:,:,:3])
return (PreprocSparseRGBWrapper(condhint=encoded),)
|