File size: 18,495 Bytes
5b40240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ac834
 
 
 
 
 
 
5b40240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca32f4
 
b3ff64d
29ac834
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
import io
import requests
import streamlit as st
from openai import OpenAI
from PyPDF2 import PdfReader
import urllib.parse
from dotenv import load_dotenv
from openai import OpenAI
from io import BytesIO
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.switch_page_button import switch_page
import json
import pandas as pd
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, DataReturnMode
import time
import random
import aiohttp
import asyncio
from PyPDF2 import PdfWriter

load_dotenv()

# ---------------------- Configuration ----------------------
st.set_page_config(page_title="Building Regulations Chatbot", layout="wide", initial_sidebar_state="expanded")
# Load environment variables from .env file
load_dotenv()

# Set OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# ---------------------- Session State Initialization ----------------------

if 'pdf_contents' not in st.session_state:
    st.session_state.pdf_contents = []
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'processed_pdfs' not in st.session_state:
    st.session_state.processed_pdfs = False
if 'id_counter' not in st.session_state:
    st.session_state.id_counter = 0
if 'assistant_id' not in st.session_state:
    st.session_state.assistant_id = None
if 'thread_id' not in st.session_state:
    st.session_state.thread_id = None
if 'file_ids' not in st.session_state:
    st.session_state.file_ids = []


# ---------------------- Helper Functions ----------------------

def get_vector_stores():
    try:
        vector_stores = client.beta.vector_stores.list()
        return vector_stores
    except Exception as e:
        return f"Error retrieving vector stores: {str(e)}"


def fetch_pdfs(city_code):
    url = f"http://91.203.213.50:5000/oereblex/{city_code}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        print("First data:", data.get('data', [])[0] if data.get('data') else None)
        return data.get('data', [])
    else:
        st.error(f"Failed to fetch PDFs for city code {city_code}")
        return None


def download_pdf(url, doc_title):
    # Add 'https://' scheme if it's missing
    if not url.startswith(('http://', 'https://')):
        url = 'https://' + url

    try:
        response = requests.get(url)
        response.raise_for_status()  # Raise an exception for bad status codes

        # Sanitize doc_title to create a valid filename
        sanitized_title = ''.join(c for c in doc_title if c.isalnum() or c in (' ', '_', '-')).rstrip()
        sanitized_title = sanitized_title.replace(' ', '_')
        filename = f"{sanitized_title}.pdf"

        # Ensure filename is unique by appending the id_counter if necessary
        if os.path.exists(filename):
            filename = f"{sanitized_title}_{st.session_state.id_counter}.pdf"
            st.session_state.id_counter += 1

        # Save the PDF content to a file
        with open(filename, 'wb') as f:
            f.write(response.content)

        return filename
    except requests.RequestException as e:
        st.error(f"Failed to download PDF from {url}. Error: {str(e)}")
        return None


# Helper function to upload file to OpenAI
def upload_file_to_openai(file_path):
    try:
        file = client.files.create(
            file=open(file_path, 'rb'),
            purpose='assistants'
        )
        return file.id
    except Exception as e:
        st.error(f"Failed to upload file {file_path}. Error: {str(e)}")
        return None


def create_assistant():
    assistant = client.beta.assistants.create(
        name="Building Regulations Assistant",
        instructions="You are an expert on building regulations. Use the provided documents to answer questions accurately.",
        model="gpt-4o-mini",
        tools=[{"type": "file_search"}]
    )
    st.session_state.assistant_id = assistant.id
    return assistant.id


def format_response(response, citations):
    """Format the response with proper markdown structure."""
    parts = ["### Response", response]
    
    if citations:
        parts.extend(["### Citations"])
        parts.extend(f"- {citation}" for citation in citations)
    
    return "\n\n".join(parts)

def response_generator(response, citations):
    """Generator for streaming response with structured output."""
    # First yield the response header
    yield "### Response\n\n"
    time.sleep(0.1)
    
    # Yield the main response word by word
    words = response.split()
    for i, word in enumerate(words):
        yield word + " "
        # Add natural pauses at punctuation
        if word.endswith(('.', '!', '?', ':')):
            time.sleep(0.1)
        else:
            time.sleep(0.05)
    
    # If there are citations, yield them with proper formatting
    if citations:
        # Add some spacing before citations
        yield "\n\n### Citations\n\n"
        time.sleep(0.1)
        
        for citation in citations:
            yield f"- {citation}\n"
            time.sleep(0.05)

def chat_with_assistant(file_ids, user_message):
    print("----- Starting chat_with_assistant -----")
    print("Received file_ids:", file_ids)
    print("Received user_message:", user_message)

    # Create attachments for each file_id
    attachments = [{"file_id": file_id, "tools": [{"type": "file_search"}]} for file_id in file_ids]
    print("Attachments created:", attachments)

    if st.session_state.thread_id is None:
        print("No existing thread_id found. Creating a new thread.")
        thread = client.beta.threads.create(
            messages=[
                {
                    "role": "user",
                    "content": user_message,
                    "attachments": attachments,
                }
            ]
        )
        st.session_state.thread_id = thread.id
        print("New thread created with id:", st.session_state.thread_id)
    else:
        print(f"Existing thread_id found: {st.session_state.thread_id}. Adding message to the thread.")
        message = client.beta.threads.messages.create(
            thread_id=st.session_state.thread_id,
            role="user",
            content=user_message,
            attachments=attachments
        )
        print("Message added to thread with id:", message.id)

    try:
        thread = client.beta.threads.retrieve(thread_id=st.session_state.thread_id)
        print("Retrieved thread:", thread)
    except Exception as e:
        print(f"Error retrieving thread with id {st.session_state.thread_id}: {e}")
        return "An error occurred while processing your request.", []

    try:
        run = client.beta.threads.runs.create_and_poll(
            thread_id=thread.id, assistant_id=st.session_state.assistant_id
        )
        print("Run created and polled:", run)
    except Exception as e:
        print("Error during run creation and polling:", e)
        return "An error occurred while processing your request.", []

    try:
        messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
        print("Retrieved messages:", messages)
    except Exception as e:
        print("Error retrieving messages:", e)
        return "An error occurred while retrieving messages.", []

    # Process the first message content
    if messages and messages[0].content:
        message_content = messages[0].content[0].text
        print("Raw message content:", message_content)

        annotations = message_content.annotations
        citations = []
        seen_citations = set()
        
        # Process annotations and citations
        for index, annotation in enumerate(annotations):
            message_content.value = message_content.value.replace(annotation.text, f"[{index}]")
            if file_citation := getattr(annotation, "file_citation", None):
                try:
                    cited_file = client.files.retrieve(file_citation.file_id)
                    citation_entry = f"[{index}] {cited_file.filename}"
                    if citation_entry not in seen_citations:
                        citations.append(citation_entry)
                        seen_citations.add(citation_entry)
                except Exception as e:
                    print(f"Error retrieving cited file for annotation {index}: {e}")

        # Create a container for the response with proper styling
        response_container = st.container()
        with response_container:
            message_placeholder = st.empty()
            streaming_content = ""
            
            # Stream the response with structure
            for chunk in response_generator(message_content.value, citations):
                streaming_content += chunk
                # Use markdown for proper formatting during streaming
                message_placeholder.markdown(streaming_content + "▌")
            
            # Final formatted response
            final_formatted_response = format_response(message_content.value, citations)
            message_placeholder.markdown(final_formatted_response)
            
            return final_formatted_response, citations
    else:
        return "No response received from the assistant.", []


# ---------------------- Streamlit App ----------------------

# ---------------------- Custom CSS Injection ----------------------

# Inject custom CSS to style chat messages
st.markdown("""
    <style>
    /* Style for the chat container */
    .chat-container {
        display: flex;
        flex-direction: column;
        gap: 1.5rem;
    }

    /* Style for individual chat messages */
    .chat-message {
        margin-bottom: 1.5rem;
    }

    /* Style for user messages */
    .chat-message.user > div:first-child {
        color: #1E90FF;  /* Dodger Blue for "You" */
        font-weight: bold;
        margin-bottom: 0.5rem;
    }

    /* Style for assistant messages */
    .chat-message.assistant > div:first-child {
        color: #32CD32;  /* Lime Green for "Assistant" */
        font-weight: bold;
        margin-bottom: 0.5rem;
    }

    /* Style for the message content */
    .message-content {
        padding: 1rem;
        border-radius: 0.5rem;
        line-height: 1.5;
    }

    .message-content h3 {
        color: #444;
        margin-top: 1rem;
        margin-bottom: 0.5rem;
        font-size: 1.1rem;
    }

    .message-content ul {
        margin-top: 0.5rem;
        margin-bottom: 0.5rem;
        padding-left: 1.5rem;
    }

    .message-content li {
        margin-bottom: 0.25rem;
    }
    </style>
    """, unsafe_allow_html=True)

page = st.sidebar.selectbox("Choose a page", ["Documents", "Home", "Admin"])

if page == "Home":
    st.title("Building Regulations Chatbot", anchor=False)

    # Sidebar improvements
    with st.sidebar:
        colored_header("Selected Documents", description="Documents for chat")
        if 'selected_pdfs' in st.session_state and not st.session_state.selected_pdfs.empty:
            for _, pdf in st.session_state.selected_pdfs.iterrows():
                st.write(f"- {pdf['Doc Title']}")
        else:
            st.write("No documents selected. Please go to the Documents page.")

    # Main chat area improvements
    colored_header("Chat", description="Ask questions about building regulations")

    # Chat container with custom CSS class
    st.markdown('<div class="chat-container" id="chat-container">', unsafe_allow_html=True)
    for chat in st.session_state.chat_history:
        with st.container():
            if chat['role'] == 'user':
                st.markdown(f"""
                <div class="chat-message user">
                    <div><strong>You</strong></div>
                    <div class="message-content">{chat['content']}</div>
                </div>
                """, unsafe_allow_html=True)
            else:
                st.markdown(f"""
                <div class="chat-message assistant">
                    <div><strong>Assistant</strong></div>
                    <div class="message-content">{chat['content']}</div>
                </div>
                """, unsafe_allow_html=True)
    st.markdown('</div>', unsafe_allow_html=True)

    # Inject JavaScript to auto-scroll the chat container
    st.markdown("""
        <script>
            const chatContainer = document.getElementById('chat-container');
            if (chatContainer) {
                chatContainer.scrollTop = chatContainer.scrollHeight;
            }
        </script>
        """, unsafe_allow_html=True)

    # Chat input improvements
    with st.form("chat_form", clear_on_submit=True):
        user_input = st.text_area("Ask a question about building regulations...", height=100)
        col1, col2 = st.columns([3, 1])
        with col2:
            submit = st.form_submit_button("Send", use_container_width=True)

    if submit and user_input.strip() != "":
        # Add user message to chat history
        st.session_state.chat_history.append({"role": "user", "content": user_input})
        
        if not st.session_state.file_ids:
            st.error("Please process PDFs first.")
        else:
            with st.spinner("Generating response..."):
                try:
                    response, citations = chat_with_assistant(st.session_state.file_ids, user_input)
                    # The response is already formatted, so we can add it directly to chat history
                    st.session_state.chat_history.append({
                        "role": "assistant", 
                        "content": response
                    })
                except Exception as e:
                    st.error(f"Error generating response: {str(e)}")

        # Rerun the app to update the chat display
        st.rerun()

    # Footer improvements
    add_vertical_space(2)
    st.markdown("---")
    col1, col2 = st.columns(2)
    with col1:
        st.caption("Powered by OpenAI GPT-4 and Pinecone")
    with col2:
        st.caption("© 2023 Your Company Name")

elif page == "Documents":
    st.title("Document Selection")

    city_code_input = st.text_input("Enter city code:", key="city_code_input")
    load_documents_button = st.button("Load Documents", key="load_documents_button")

    if load_documents_button and city_code_input:
        with st.spinner("Fetching PDFs..."):
            pdfs = fetch_pdfs(city_code_input)
            if pdfs:
                st.session_state.available_pdfs = pdfs
                st.success(f"Found {len(pdfs)} PDFs")
            else:
                st.error("No PDFs found")

    if 'available_pdfs' in st.session_state:
        st.write(f"Total PDFs: {len(st.session_state.available_pdfs)}")

        # Create a DataFrame from the available PDFs
        df = pd.DataFrame(st.session_state.available_pdfs)

        # Select and rename only the specified columns
        df = df[['municipality', 'abbreviation', 'doc_title', 'file_title', 'file_href', 'enactment_date', 'prio']]
        df = df.rename(columns={
            "municipality": "Municipality",
            "abbreviation": "Abbreviation",
            "doc_title": "Doc Title",
            "file_title": "File Title",
            "file_href": "File Href",
            "enactment_date": "Enactment Date",
            "prio": "Prio"
        })

        # Add a checkbox column to the DataFrame at the beginning
        df.insert(0, "Select", False)

        # Configure grid options
        gb = GridOptionsBuilder.from_dataframe(df)
        gb.configure_default_column(enablePivot=True, enableValue=True, enableRowGroup=True)
        gb.configure_column("Select", header_name="Select", cellRenderer='checkboxRenderer')
        gb.configure_column("File Href", cellRenderer='linkRenderer')
        gb.configure_selection(selection_mode="multiple", use_checkbox=True)
        gb.configure_side_bar()
        gridOptions = gb.build()

        # Display the AgGrid
        grid_response = AgGrid(
            df,
            gridOptions=gridOptions,
            enable_enterprise_modules=True,
            update_mode=GridUpdateMode.MODEL_CHANGED,
            data_return_mode=DataReturnMode.FILTERED_AND_SORTED,
            fit_columns_on_grid_load=False,
        )

        # Get the selected rows
        selected_rows = grid_response['selected_rows']

        # Debug: Print the structure of selected_rows
        st.write("Debug - Selected Rows Structure:", selected_rows)

        if st.button("Process Selected PDFs"):
            if len(selected_rows) > 0:  # Check if there are any selected rows
                # Convert selected_rows to a DataFrame
                st.session_state.selected_pdfs = pd.DataFrame(selected_rows)
                st.session_state.assistant_id = create_assistant()
                with st.spinner("Processing PDFs and creating/updating assistant..."):
                    file_ids = []

                    for _, pdf in st.session_state.selected_pdfs.iterrows():
                        # Debug: Print each pdf item
                        st.write("Debug - PDF item:", pdf)

                        file_href = pdf['File Href']
                        doc_title = pdf['Doc Title']

                        # Pass doc_title to download_pdf
                        file_name = download_pdf(file_href, doc_title)
                        if file_name:
                            file_path = f"./{file_name}"
                            file_id = upload_file_to_openai(file_path)
                            if file_id:
                                file_ids.append(file_id)
                            else:
                                st.warning(f"Failed to upload {doc_title}. Skipping this file.")
                        else:
                            st.warning(f"Failed to download {doc_title}. Skipping this file.")

                    st.session_state.file_ids = file_ids
                st.success("PDFs processed successfully. You can now chat on the Home page.")
            else:
                st.warning("Select at least one PDF.")
        

elif page == "Admin":
    st.title("Admin Panel")
    st.header("Vector Stores Information")

    vector_stores = get_vector_stores()
    json_vector_stores = json.dumps([vs.model_dump() for vs in vector_stores])
    st.write(json_vector_stores)

    # Add a button to go back to the main page