Spaces:
Sleeping
Sleeping
File size: 18,478 Bytes
75309ed 6e732f0 75309ed e71eca9 2c0c67c 8a07f02 75309ed 13fd6b1 75d4aef 75309ed 35ec642 f344d7c 75309ed 5132d94 e71eca9 75309ed 5132d94 75309ed fc95199 75309ed 5132d94 75309ed 5132d94 75309ed e71eca9 75309ed f72b2d3 62f4f30 75309ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import requests
import time
import json
import os
import logging
from typing import List, Dict
from utils.logging import log_function, setup_logging
from tenacity import retry, stop_after_attempt, wait_fixed, retry_if_exception_type, wait_exponential
from config.load_configs import load_config
from dotenv import load_dotenv
from requests.packages.urllib3.util.retry import Retry
load_dotenv()
setup_logging(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class BaseModel:
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
self.temperature = temperature
self.model = model
self.json_response = json_response
self.max_retries = max_retries
self.retry_delay = retry_delay
# @retry(stop=stop_after_attempt(3), wait=wait_fixed(1), retry=retry_if_exception_type(requests.RequestException))
@retry(stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=2, max=15), reraise=True)
def _make_request(self, url, headers, payload):
response = requests.post(url, headers=headers, data=json.dumps(payload))
response.raise_for_status()
return response.json()
class MistralModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
# load_config()
self.api_key = os.environ.get("MISTRAL_API_KEY")
self.headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {self.api_key}'
}
self.model_endpoint = "https://api.mistral.ai/v1/chat/completions"
@retry(stop=stop_after_attempt(3), wait=wait_fixed(1), retry=retry_if_exception_type(requests.RequestException))
def _make_request(self, url, headers, payload):
response = requests.post(url, headers=headers, data=json.dumps(payload))
response.raise_for_status()
return response.json()
def invoke(self, messages: List[Dict[str, str]]) -> str:
system = messages[0]["content"]
user = messages[1]["content"]
payload = {
"model": self.model,
"messages": [
{
"role": "system",
"content": system
},
{
"role": "user",
"content": user
}
],
"temperature": self.temperature,
}
if self.json_response:
payload["response_format"] = {"type": "json_object"}
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
if 'choices' not in request_response_json or len(request_response_json['choices']) == 0:
raise ValueError("No choices in response")
response_content = request_response_json['choices'][0]['message']['content']
if self.json_response:
response = json.dumps(json.loads(response_content))
else:
response = response_content
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except (ValueError, KeyError, json.JSONDecodeError) as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class ClaudeModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
self.api_key = os.environ.get("ANTHROPIC_API_KEY")
self.headers = {
'Content-Type': 'application/json',
'x-api-key': self.api_key,
'anthropic-version': '2023-06-01'
}
self.model_endpoint = "https://api.302.ai/v1/chat/completions"
def invoke(self, messages: List[Dict[str, str]]) -> str:
# time.sleep(5)
system = messages[0]["content"]
user = messages[1]["content"]
content = f"system:{system}\n\n user:{user}"
if self.json_response:
content += ". Your output must be json formatted. Just return the specified json format, do not prepend your response with anything."
payload = {
"model": self.model,
"messages": [
{
"role": "user",
"content": content
}
],
"max_tokens": 4096,
"temperature": self.temperature,
}
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
if 'content' not in request_response_json or not request_response_json['content']:
raise ValueError("No content in response")
response_content = request_response_json['content'][0]['text']
if self.json_response:
response = json.dumps(json.loads(response_content))
else:
response = response_content
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except (ValueError, KeyError, json.JSONDecodeError) as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class GeminiModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
self.api_key = os.environ.get("GEMINI_API_KEY")
self.headers = {
'Content-Type': 'application/json'
}
self.model_endpoint = f"https://generativelanguage.googleapis.com/v1/models/{model}:generateContent?key={self.api_key}"
def invoke(self, messages: List[Dict[str, str]]) -> str:
system = messages[0]["content"]
user = messages[1]["content"]
content = f"system:{system}\n\nuser:{user}"
if self.json_response:
content += ". Your output must be JSON formatted. Just return the specified JSON format, do not prepend your response with anything."
payload = {
"contents": [
{
"parts": [
{
"text": content
}
]
}
],
"generationConfig": {
"temperature": self.temperature
},
}
if self.json_response:
payload = {
"contents": [
{
"parts": [
{
"text": content
}
]
}
],
"generationConfig": {
"response_mime_type": "application/json",
"temperature": self.temperature
},
}
# payload["generationConfig"]["response_mime_type"] = "application/json"
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
if 'candidates' not in request_response_json or not request_response_json['candidates']:
raise ValueError("No content in response")
response_content = request_response_json['candidates'][0]['content']['parts'][0]['text']
if self.json_response:
response = json.dumps(json.loads(response_content))
else:
response = response_content
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except (ValueError, KeyError, json.JSONDecodeError) as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class GroqModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
self.api_key = os.environ.get("GROQ_API_KEY")
self.headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {self.api_key}'
}
self.model_endpoint = "https://api.groq.com/openai/v1/chat/completions"
def invoke(self, messages: List[Dict[str, str]]) -> str:
system = messages[0]["content"]
user = messages[1]["content"]
payload = {
"model": self.model,
"messages": [
{
"role": "user",
"content": f"system:{system}\n\n user:{user}"
}
],
"temperature": self.temperature,
}
time.sleep(10)
if self.json_response:
payload["response_format"] = {"type": "json_object"}
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
if 'choices' not in request_response_json or len(request_response_json['choices']) == 0:
raise ValueError("No choices in response")
response_content = request_response_json['choices'][0]['message']['content']
if self.json_response:
response = json.dumps(json.loads(response_content))
else:
response = response_content
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except (ValueError, KeyError, json.JSONDecodeError) as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class OllamaModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
self.headers = {"Content-Type": "application/json"}
self.ollama_host = os.getenv("OLLAMA_HOST", "http://localhost:11434")
self.model_endpoint = f"{self.ollama_host}/api/generate"
def _check_and_pull_model(self):
# Check if the model exists
response = requests.get(f"{self.ollama_host}/api/tags")
if response.status_code == 200:
models = response.json().get("models", [])
if not any(model["name"] == self.model for model in models):
print(f"Model {self.model} not found. Pulling the model...")
self._pull_model()
else:
print(f"Model {self.model} is already available.")
else:
print(f"Failed to check models. Status code: {response.status_code}")
def _pull_model(self):
pull_endpoint = f"{self.ollama_host}/api/pull"
payload = {"name": self.model}
response = requests.post(pull_endpoint, json=payload, stream=True)
if response.status_code == 200:
for line in response.iter_lines():
if line:
status = json.loads(line.decode('utf-8'))
print(f"Pulling model: {status.get('status')}")
print(f"Model {self.model} pulled successfully.")
else:
print(f"Failed to pull model. Status code: {response.status_code}")
def invoke(self, messages: List[Dict[str, str]]) -> str:
self._check_and_pull_model() # Check and pull the model if necessary
system = messages[0]["content"]
user = messages[1]["content"]
payload = {
"model": self.model,
"prompt": user,
"system": system,
"stream": False,
"temperature": self.temperature,
}
if self.json_response:
payload["format"] = "json"
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
if self.json_response:
response = json.dumps(json.loads(request_response_json['response']))
else:
response = str(request_response_json['response'])
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except json.JSONDecodeError as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class VllmModel(BaseModel):
def __init__(self, temperature: float, model: str, model_endpoint: str, json_response: bool, stop: str = None, max_retries: int = 5, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
self.headers = {"Content-Type": "application/json"}
self.model_endpoint = model_endpoint + 'v1/chat/completions'
self.stop = stop
def invoke(self, messages: List[Dict[str, str]], guided_json: dict = None) -> str:
system = messages[0]["content"]
user = messages[1]["content"]
prefix = self.model.split('/')[0]
if prefix == "mistralai":
payload = {
"model": self.model,
"messages": [
{
"role": "user",
"content": f"system:{system}\n\n user:{user}"
}
],
"temperature": self.temperature,
"stop": None,
}
else:
payload = {
"model": self.model,
"messages": [
{
"role": "system",
"content": system
},
{
"role": "user",
"content": user
}
],
"temperature": self.temperature,
"stop": self.stop,
}
if self.json_response:
payload["response_format"] = {"type": "json_object"}
payload["guided_json"] = guided_json
try:
request_response_json = self._make_request(self.model_endpoint, self.headers, payload)
response_content = request_response_json['choices'][0]['message']['content']
if self.json_response:
response = json.dumps(json.loads(response_content))
else:
response = str(response_content)
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except json.JSONDecodeError as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
class OpenAIModel(BaseModel):
def __init__(self, temperature: float, model: str, json_response: bool, max_retries: int = 3, retry_delay: int = 1):
super().__init__(temperature, model, json_response, max_retries, retry_delay)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
load_dotenv()
self.model_endpoint = 'https://api.302.ai/v1/chat/completions'
self.api_key = os.environ.get('OPENAI_API_KEY')
self.headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {self.api_key}'
}
def invoke(self, messages: List[Dict[str, str]]) -> str:
system = messages[0]["content"]
user = messages[1]["content"]
if self.model == "o1-preview" or self.model == "o1-mini":
payload = {
"model": self.model,
"messages": [
{
"role": "user",
"content": f"{system}\n\n{user}"
}
]
}
else:
payload = {
"model": self.model,
"messages": [
{
"role": "system",
"content": system
},
{
"role": "user",
"content": user
}
],
"stream": False,
"temperature": self.temperature,
}
if self.json_response:
payload["response_format"] = {"type": "json_object"}
payload["messages"][0]["content"] = f"{system}\n\nYou must respond in JSON format."
try:
response_json = self._make_request(self.model_endpoint, self.headers, payload)
if self.json_response:
response = json.dumps(json.loads(response_json['choices'][0]['message']['content']))
else:
response = response_json['choices'][0]['message']['content']
return response
except requests.RequestException as e:
return json.dumps({"error": f"Error in invoking model after {self.max_retries} retries: {str(e)}"})
except json.JSONDecodeError as e:
return json.dumps({"error": f"Error processing response: {str(e)}"})
|