File size: 1,999 Bytes
			
			af98023 c3a2cbd 0d6bc62 c3a2cbd  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54  | 
								# model_loader.py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
# Classifier Model (XLM-RoBERTa for toxicity classification)
class ClassifierModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.load_model()
    def load_model(self):
        """
        Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification.
        """
        try:
            model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
            self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
            self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
        except Exception as e:
            raise Exception(f"Error loading classifier model or tokenizer: {str(e)}")
# Paraphraser Model (Granite 3.2-2B-Instruct for paraphrasing)
class ParaphraserModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.load_model()
    def load_model(self):
        """
        Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
        """
        try:
            model_name = "ibm-granite/granite-3.2-2b-instruct"
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        except Exception as e:
            raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}")
# Metrics Models (Sentence-BERT only)
class MetricsModels:
    def __init__(self):
        self.sentence_bert_model = None
    def load_sentence_bert(self):
        if self.sentence_bert_model is None:
            self.sentence_bert_model = SentenceTransformer('all-MiniLM-L6-v2')
        return self.sentence_bert_model
# Singleton instances
classifier_model = ClassifierModel()
paraphraser_model = ParaphraserModel()
metrics_models = MetricsModels() |