File size: 2,794 Bytes
702ff78
 
0cf00a8
702ff78
 
 
4e7dc13
702ff78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fce000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os

os.system("pip install git+https://github.com/shumingma/transformers.git")

import threading
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True


from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)

import gradio as gr

model_id = "microsoft/bitnet-b1.58-2B-4T"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).to("cpu")

def respond(
    message: str,
    history: list[tuple[str,str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    
):

    messages = [{"role": "system", "content": system_message}]
    for user_msg, bot_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})
    messages.append({"role": "user", "content": message})

    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
    )
    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    response = ""
    for new_text in streamer:
        response += new_text
        yield response

demo = gr.ChatInterface(
    fn=respond,
    title="Scientific Article Summarizer using BITNet",
    description="Copia/pega el texto a resumir de cualquier articulo",
    examples=[
        [
            "Copia todo el texto del articulo cientifico a resumir",
            "You are a profesional assistant that summarizes scientific articles.",
            512,
            0.7,
            0.95,
        ],
    ],
    additional_inputs=[
        gr.Textbox(
            value="You are a helpful assistant that summarizes scientific articles.",
            label="System message"
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=512,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.7,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()