File size: 12,351 Bytes
925951a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import re
import openai
import pinecone
import requests
import gradio as gr
from gtts import gTTS
from dotenv import load_dotenv
from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain.vectorstores import Chroma
from requests.exceptions import JSONDecodeError
from transformers import AutoTokenizer, AutoModel
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA, LLMChain
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Load environment variables from .env file
load_dotenv()

# Initialize Pinecone with API key
pinecone.init(api_key="5207f7a8-e003-4610-8adb-367ac66812d4", environment='gcp-starter')
index_name = "clinical-bert-index"

# Create a vector database that stores medical knowledge
loader = DirectoryLoader('./medical_data/', glob="./*.txt", loader_cls=TextLoader)
documents = loader.load()

# Split documents into texts
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)

# Initialize Vectordb
persist_directory = 'db'
embedding = OpenAIEmbeddings()
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
vectordb.persist()

# Create a retrieval QA chain using the vector database as its retriever
retriever = vectordb.as_retriever()
docs = retriever.get_relevant_documents("For Cuts and Scrapes ")
retriever = vectordb.as_retriever(search_kwargs={"k": 2})

# Specify the template that the LLM will use to generate its responses
bot_template = '''I want you to act as a medicine advisor for people. 
Explain in simple words how to treat a {medical_complication}'''

tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT")
model = AutoModel.from_pretrained("medicalai/ClinicalBERT")
model_path = "medicalai/ClinicalBERT"
tokenizer_str = tokenizer.__class__.__name__ 

# Create Prompt
prompt = PromptTemplate(
    input_variables=['medical_complication'],
    template=bot_template 
)

# Specify the LLM that you want to use as the language model
llm = OpenAI(temperature=0.8)
chain1 = LLMChain(llm=llm, prompt=prompt)

# Create the retrieval QA chain
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)

# Global variables
global_filepath = None
global_feedback = None
chatgpt_response = ""
modMed_response = ""
trigger_words = ""


def preprocess_text(text):
    # Preprocess the input text
    text = text.lower()
    text = re.sub(r"[^a-zA-Z0-9\s]", "", text)
    text = re.sub(r"\s+", " ", text).strip()

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)

    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state

    embeddings_list = embeddings.squeeze().tolist()
    embeddings_array = embeddings.squeeze().numpy()

    reducer = umap.UMAP(n_components=768)
    reduced_embeddings = reducer.fit_transform(embeddings_array)

    return reduced_embeddings


# API key for OpenAI
my_key = os.getenv("OPENAI_API_KEY")
openai.api_key = my_key

# Initialize Pinecone index
pinecone_index = pinecone.Index(index_name=index_name)

# Define function to retrieve embeddings from Pinecone
def retrieve_embeddings_from_pinecone(query):
    results = pinecone_index.query(
        vector=query,
        top_k=3,
        include_values=True
    )
    retrieved_embeddings = results[0].vectors
    return retrieved_embeddings


# Function to process user input
def process_user_input(audio_filepath, feedback):
    global global_filepath
    audio = open(audio_filepath, "rb")
    global_filepath = audio_filepath

    transcript = openai.Audio.transcribe("whisper-1", audio)

    return transcript["text"]


# Function to find trigger words
def findTriggerWords(user_input):
    prompt = (
        f"Given this user input: {user_input}\n"
        "Task: Identify and return important keywords from the user input. "
        "These keywords are crucial for understanding the user's intent and finding a relevant solution. "
        "Consider context and relevance. Provide a numbered list up to 5 keywords or less"
    )

    response = openai.Completion.create(
        model="text-davinci-003", 
        prompt=prompt,
        max_tokens=500, 
        temperature=0.7,  
    )

    ChatGPT_response = response['choices'][0]['text']
    return ChatGPT_response.replace(".", "").replace("\n", "", 1).strip()


# Function to make an API call
def api_call(url):
    try:
        response = requests.post(url)
        if response.status_code == 200:
            updated_data = response.json()
            print(f"Updated Database: {updated_data}")
            return updated_data
        else:
            print(f"Error updating database: {response.status_code}")
            print(response.text)
            return None
    except JSONDecodeError as e:
        print(f"JSONDecodeError: {e}")
        print(f"Response text: {response.text}")
        return None


# Function to process feedback
def process_feedback(feedback, current_filepath):
    global global_filepath, global_feedback, chatgpt_response, modMed_response
    ans = ""
    url = ""
    backend_url = "https://iq4aas9gc2.execute-api.us-east-2.amazonaws.com/default/test/"

    if feedback in ["πŸ₯ ModMed", "πŸ€– ChatGPT"] and global_feedback == None:
        global_feedback = feedback
        incr_query_string = ''.join(char for char in feedback if char.isalnum())
        url = f"{backend_url}increment_likes/{incr_query_string}"
        print("new audio file")

    elif feedback in ["πŸ₯ ModMed", "πŸ€– ChatGPT"] and global_feedback != None:
        print("same audio file, different radio button")
        global_feedback = feedback
        decr_query_string = ''.join(char for char in global_feedback if char.isalnum())
        incr_query_string = ''.join(char for char in feedback if char.isalnum())
        decrement_url = f"{backend_url}decrement_likes/{decr_query_string}"
        increment_url = f"{backend_url}increment_likes/{incr_query_string}"

        # Decrement likes
        decrement_data = api_call(decrement_url)

        if decrement_data:
            # Increment likes if decrement was successful
            url = increment_url

    else:
        return ans

    updated_data = api_call(url)

    if updated_data:
        if feedback == "πŸ₯ ModMed":
            chatgpt_response = ""
            modMed_response = "True"
        elif feedback == "πŸ€– ChatGPT":
            modMed_response = ""
            chatgpt_response = "True"

        preferred_strings = ", ".join(string for string in ["ModMed", "ChatGPT"] if string != incr_query_string)
        ans = f"{updated_data['Likes']}/{updated_data['TotalLikes']} People preferred {incr_query_string} over {preferred_strings}.\nThank you! πŸ‘"

    return ans


# Function to handle the chatbot logic
def chatbot(microphone_filepath, upload_filepath, feedback):
    global global_filepath, global_feedback, chatgpt_response, modMed_response, trigger_words
    print("Feedback", feedback)
    
    if microphone_filepath is not None:
        audio_filepath = microphone_filepath
    elif upload_filepath is not None:
        audio_filepath = upload_filepath
    else:
        global_filepath = global_feedback = None
        chatgpt_response = ""
        modMed_response = ""
        trigger_words = ""
        print(trigger_words)
        global_filepath = None
        global_feedback = None
        return None, None, None, None, None        

    # Process user input
    if global_filepath != audio_filepath:
        user_input = process_user_input(audio_filepath, feedback)
        trigger_words = findTriggerWords(user_input)
    elif feedback == "Clear" and global_filepath != None:
        feedback = ""
        chatgpt_response = ""
        modMed_response = ""
        trigger_words = ""
        global_filepath = None
        global_feedback = None
        return None, None, None, None, None
    else:
        user_input = None

    if user_input is not None or feedback != global_feedback:
        # Get the chatbot response
        chatgpt_prompt = f"Act like a medical bot and return at most 5 sentences if the user_input isn't a medical question then answer the question in general: user_input:\n{user_input}"
        llm_response = qa_chain(chatgpt_prompt)
        prompt_response = chain1(user_input)
        
        f_modMed_response, f_chatgpt_response = process_llm_response(llm_response, prompt_response)
        ans = process_feedback(feedback, global_filepath)

        if modMed_response  == "" and chatgpt_response != "": 
            print("CHATGPT FEEDBACK")
            clean_response = f_chatgpt_response.split('<br>')[0]
            audio_response = text_to_speech(clean_response) 
            return gr.make_waveform(audio_response, animate=True), None, f_chatgpt_response, trigger_words, ans 

        elif modMed_response  != "" and chatgpt_response == "": 
            print("MODMED FEEDBACK")
            clean_response = f_modMed_response.split('<br>')[0]
            audio_response = text_to_speech(clean_response) 
            return gr.make_waveform(audio_response, animate=True), f_modMed_response, None, trigger_words, ans 
        else:
            print("NO FEEDBACK")
            audio_response = text_to_speech(f_modMed_response.split('<br>')[0])
            return gr.make_waveform(audio_response, animate=True), f_modMed_response, f_chatgpt_response, trigger_words, ans
    
    return None, None, None, None, None


def process_llm_response(llm_response, prompt_response):
    ChatGPT_response = llm_response['result']
    ModMed_response = str(prompt_response["text"])

    ChatGPT_image_html = f'<img src="https://static.vecteezy.com/system/resources/previews/021/495/996/original/chatgpt-openai-logo-icon-free-png.png" alt="image" style="width:25px;height:25px;display:inline-block;">'
    ModMed_image_html = f'<img src="https://png.pngtree.com/png-clipart/20230707/original/pngtree-green-approved-stamp-with-check-mark-symbol-vector-png-image_9271227.png" alt="image" style="width:25px;height:25px;display:inline-block;">'
    
    ModMed_source = f'<br><span style="color: darkgray;">ModMedicine Certified {ModMed_image_html}</span>'
    ChatGPT_source = f'<br><span style="color: darkgray;">ChatGPT {ChatGPT_image_html}</span>'

    return (
        ModMed_response + ModMed_source,
        ChatGPT_response + ChatGPT_source
    )


def play_response(response=None):
    if response is not None:
        audio_path = text_to_speech(response)
        return gr.Audio(audio_path)
    else:
        return None


def text_to_speech(text):
    # Find the index of 'ModMed Certified' (case insensitive)
    certified_index = text.lower().find('ModMedicine certified')
    chatgpt_index = text.lower().find('ChatGPT')
    
    if certified_index != -1 or chatgpt_index != -1:
        # Cut off the text after 'ModMed Certified'
        text = text[:certified_index]

    tts = gTTS(text=text, lang='en', tld='co.uk')
    audio_path = 'response.mp3'
    tts.save(audio_path)
    
    return audio_path


# Feedback radio button choices
feedback_buttons = gr.Radio(
    choices=["πŸ₯ ModMed", "πŸ€– ChatGPT", "Clear"],
    label="Which solution was better?",
    default=None  # Set the default value to None
)

# Gradio Interface
demo = gr.Interface(
    fn=chatbot,
    inputs=[
        gr.Audio(source="microphone", type="filepath"),
        gr.Audio(source="upload", type="filepath"),
        feedback_buttons
    ],
    outputs=[
        gr.Video(autoplay=True, label="ModMedicine"),
        gr.outputs.HTML(label="ModMed Response"),
        gr.outputs.HTML(label="ChatGpt Response"),
        gr.Text(label="Trigger words"),
        gr.Text(label="Feedback")
    ],
    examples=[
        ["./dummy_audio1.mp3"],
        ["./dummy_audio2.mp3"]
    ],
    title="First-Aid Bot",
    description='<img src="https://drive.google.com/uc?id=1fWN0xn_KXLb0fCtTAyoxwacwzyH6w4am&export=download" alt="logo" style="display: block; margin: auto; width:125px;height:125px;">',
    live=True
)

# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860)