File size: 1,042 Bytes
8254353 c90e0f6 8254353 40c0aeb c90e0f6 4b5ea20 c90e0f6 4b5ea20 c90e0f6 40c0aeb 8254353 8475b83 8254353 e82396e 8254353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from langchain.llms import HuggingFaceHub
#Function to return the response
def generate_answer(query):
llm = HuggingFaceHub(
repo_id = "huggingfaceh4/zephyr-7b-alpha",
model_kwargs={"temperature": 0.5, "max_length": 64,"max_new_tokens":512}
)
prompt = f"""
<|system|>
You are an AI assistant that follows instruction extremely well. Please be truthful and give direct answers
</s>
<|user|>
{query}</s>
<|assistant|>
"""
result = llm.predict(prompt)
return result
#App UI starts here
st.set_page_config(page_title = "LangChain Demo", page_icon = ":robot:")
st.header("LangChain Demo")
#Gets User Input
def get_text():
input_text = st.text_input("You: ", key="input")
return input_text
user_input = get_text()
response = generate_answer(user_input)
submit = st.button("Generate")
#If the button clicked
if submit:
st.subheader("Answer: ")
st.write(response)
|