File size: 736 Bytes
59b76ad
b11593d
8324298
c2e5f66
 
931ef66
 
b11593d
 
 
3125b67
b11593d
3125b67
 
 
 
b11593d
3125b67
 
 
59b76ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
import torch
from model import ECAPA_gender


# Load the model
model = ECAPA_gender.from_pretrained("JaesungHuh/ecapa-gender")
model.eval()

def predict_gender(filepath):
    audio = model.load_audio(filepath)
    with torch.no_grad():
        output = model.forward(audio)
        probs = torch.softmax(output, dim=1)
        prob_dict = {model.pred2gender[i]: float(prob) for i, prob in enumerate(probs[0])}
    return prob_dict

audio_component = gr.Audio(type='filepath', label='Upload your audio file here')
label_component = gr.Label(label='Gender classification result')
demo = gr.Interface(fn=predict_gender, inputs=audio_component, outputs=label_component, examples=['00001.wav', '00002.wav'])
demo.launch()