Spaces:
Running
Running
File size: 3,400 Bytes
0a30cc1 fb46644 0a30cc1 fb46644 ac5d938 fb46644 0a30cc1 fb46644 156ce35 fb46644 0ba8bf7 fb46644 0a30cc1 438956d fb46644 0a30cc1 438956d fb46644 ff2b9e2 0897c3b ff2b9e2 8b0c061 5d29147 fb46644 0a30cc1 fb46644 513550a fb46644 ac5d938 00af88e c0e47af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from typing import Optional
import spacy
from spacy import displacy
from spacy.language import Language
import streamlit as st
from spacy_streamlit import visualize_parser
from spacy_streamlit import visualize_tokens
import base64
from PIL import Image
#import pandas
st.set_page_config(layout="wide")
st.image("logo.png", use_column_width=False, width=150)
st.title("Ancient Greek Syntax Analyzer")
st.markdown("Welcome to our analyzer. Here you can parse the parts of speech (POS) and the syntactic relationships of any ancient Greek sentence. This analysis is done by our language models trained with transformers and the NLP library spaCy. Below, you can choose which model do you want to use (each model may produce a different analysis). Documentation about the linguistic terms used by our models to annotate your sentences can be found here. If you have any questions, please contact us at diogenet@ucsd.edu")
st.header("Select a model:")
spacy_model = st.selectbox("Model", ["grc_proiel_trf","grc_proiel_lg","grc_proiel_sm","grc_perseus_trf"])
st.header("Enter text:")
text = st.text_area("Greek text","φύσει μὲν οὖν αἴσθησιν ἔχοντα γίγνεται τὰ ζῷα, ἐκ δὲ ταύτης τοῖς μὲν αὐτῶν οὐκ ἐγγίγνεται μνήμη, τοῖς δʼ ἐγγίγνεται.")
#config = {"punct_chars": [".", ";", "·"]}
nlp = spacy.load(spacy_model, exclude="senter")
#nlp.add_pipe("sentencizer", config=config, before="parser")
# Get the new pipeline order
doc = nlp(text)
def get_html(html: str):
"""Convert HTML so it can be rendered."""
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
# Newlines seem to mess with the rendering
html = html.replace("\n", " ")
return WRAPPER.format(html)
def get_svg(svg: str, style: str = "", wrap: bool = True):
"""Convert an SVG to a base64-encoded image."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = f'<img src="data:image/svg+xml;base64,{b64}" style="{style}"/>'
return get_html(html) if wrap else html
def visualize_parser(
doc: spacy.tokens.Doc,
*,
title: Optional[str] = "Dependency parse & part of speech:",
key: Optional[str] = None,
) -> None:
"""Visualizer for dependency parses."""
if title:
st.header(title)
cols = st.columns(4)
split_sents = cols[0].checkbox(
"Split sentences", value=True, key=f"{key}_parser_split_sents"
)
options = {
"collapse_punct": cols[1].checkbox(
"Collapse punct", value=True, key=f"{key}_parser_collapse_punct"
),
"compact": cols[3].checkbox("Compact mode", value=True, key=f"{key}_parser_compact"),
}
docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
for sent in docs:
html = displacy.render(sent, options=options, style="dep")
# Double newlines seem to mess with the rendering
html = html.replace("\n\n", "\n")
if split_sents and len(docs) > 1:
st.markdown(f"> {sent.text}")
st.write(get_svg(html), unsafe_allow_html=True)
visualize_parser(doc)
#pd.set_option('display.max_colwidth', None)
visualize_tokens(doc, attrs=["text", "lemma_", "pos_", "dep_"], title="Table view:", key="tokens")
|