File size: 3,400 Bytes
0a30cc1
fb46644
 
 
 
 
0a30cc1
fb46644
 
ac5d938
fb46644
 
 
 
 
 
0a30cc1
fb46644
156ce35
fb46644
0ba8bf7
fb46644
0a30cc1
438956d
fb46644
0a30cc1
438956d
fb46644
 
ff2b9e2
0897c3b
ff2b9e2
 
8b0c061
5d29147
 
 
fb46644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a30cc1
fb46644
 
 
 
 
 
 
 
 
 
 
 
 
513550a
fb46644
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5d938
00af88e
 
c0e47af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from typing import Optional 
import spacy
from spacy import displacy
from spacy.language import Language
import streamlit as st
from spacy_streamlit import visualize_parser
from spacy_streamlit import visualize_tokens
import base64
from PIL import Image
#import pandas




st.set_page_config(layout="wide")

st.image("logo.png", use_column_width=False, width=150)

st.title("Ancient Greek Syntax Analyzer")

st.markdown("Welcome to our analyzer. Here you can parse the parts of speech (POS) and the syntactic relationships of any ancient Greek sentence. This analysis is done by our language models trained with transformers and the NLP library spaCy.  Below, you can choose which model do you want to use (each model may produce a different analysis).  Documentation about the linguistic terms used by our models to annotate your sentences can be found here.  If you have any questions, please contact us at diogenet@ucsd.edu")

st.header("Select a model:")
spacy_model = st.selectbox("Model", ["grc_proiel_trf","grc_proiel_lg","grc_proiel_sm","grc_perseus_trf"])

st.header("Enter text:")
text = st.text_area("Greek text","φύσει μὲν οὖν αἴσθησιν ἔχοντα γίγνεται τὰ ζῷα, ἐκ δὲ ταύτης τοῖς μὲν αὐτῶν οὐκ ἐγγίγνεται μνήμη, τοῖς δʼ ἐγγίγνεται.")


#config = {"punct_chars": [".", ";", "·"]}

nlp = spacy.load(spacy_model, exclude="senter")
#nlp.add_pipe("sentencizer", config=config, before="parser")


# Get the new pipeline order

doc = nlp(text)

def get_html(html: str):
    """Convert HTML so it can be rendered."""
    WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
    # Newlines seem to mess with the rendering
    html = html.replace("\n", " ")
    return WRAPPER.format(html)

def get_svg(svg: str, style: str = "", wrap: bool = True):
    """Convert an SVG to a base64-encoded image."""
    b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
    html = f'<img src="data:image/svg+xml;base64,{b64}" style="{style}"/>'
    return get_html(html) if wrap else html

def visualize_parser(
    doc: spacy.tokens.Doc,
    *,
    title: Optional[str] = "Dependency parse & part of speech:",
    key: Optional[str] = None,
) -> None:
    """Visualizer for dependency parses."""
    if title:
        st.header(title)
    cols = st.columns(4)
    split_sents = cols[0].checkbox(
        "Split sentences", value=True, key=f"{key}_parser_split_sents"
    )
    options = {
        "collapse_punct": cols[1].checkbox(
            "Collapse punct", value=True, key=f"{key}_parser_collapse_punct"    
        ),
        "compact": cols[3].checkbox("Compact mode", value=True, key=f"{key}_parser_compact"),
    }
    docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
    for sent in docs:
        html = displacy.render(sent, options=options, style="dep")
        # Double newlines seem to mess with the rendering
        html = html.replace("\n\n", "\n")
        if split_sents and len(docs) > 1:
            st.markdown(f"> {sent.text}")
        st.write(get_svg(html), unsafe_allow_html=True)


visualize_parser(doc)


#pd.set_option('display.max_colwidth', None)


visualize_tokens(doc, attrs=["text", "lemma_", "pos_", "dep_"], title="Table view:", key="tokens")