Spaces:
Runtime error
Runtime error
File size: 11,938 Bytes
0b721e9 d23325f 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e d23325f 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 1a0652e 0b721e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 19 16:49:22 2025
@author: jacobwildt-persson
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# -----------------------------------------------
# Requirements & Setup Instructions
# -----------------------------------------------
# Python version:
# Requires Python 3.10 or later (tested on 3.12)
# Run your script inside a virtual environment (e.g. conda or venv) to avoid conflicts.
# Recreate the environment with theese command in terminal
# conda env create -f environment.yml
# conda activate sprakenv
#
# Install all required packages:
# Run these commands in the terminal:
# pip install --upgrade gradio
# pip install pdfplumber
# pip install nltk
# pip install transformers
# pip install -U spacy
# Download language models:
# python -m spacy download es_core_news_lg
# python -m spacy download en_core_web_lg # if you add NER for English
# Check Gradio version used:
# import gradio as gr
# print(gr.__version__) # Gradio version 4.18.0
# 🔗 Reference: Gradio Quickstart Guide
# https://www.gradio.app/guides/quickstart
#Hugging Face
# https://huggingface.co/models
# Enghlish API model
# LanguageTool API: https://languagetool.org/http-api/swagger
#Rembember !!!!!!!!!!!!!!!!!!!!!!!!!
# Run your script inside a virtual environment (e.g. conda or venv) to avoid conflicts.
# Recreate the environment with theese command in terminal
# conda env create -f environment.yml
# conda activate sprakenv
# python -m spacy download es_core_news_lg
#python -m nltk.downloader punkt wordnet
# -----------------------------------------------
"""
Language learning app with Gradio UI, on & multiple users:
- Import text from file (.txt/.csv/.pdf) or manual text input
- Grammar correction via transformers (Spanish) or LanguageTool API (English)
- Analyze text (known/unknown words) per user & language
- Save unknown words as known
- Generate coherent practice sentence (Spanish & English)
- Log grammar corrections and practice sentence suggestions to CSV
"""
import os
import datetime
import sqlite3
import requests
import random
import pandas as pd
import pdfplumber
import spacy
import csv
# SQLite is accessed via the built-in sqlite3 module (no need to install sqlite3-binary)
import sqlite3
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from transformers import AutoTokenizer, BartForConditionalGeneration, AutoModelForCausalLM
import gradio as gr
import gradio_client.utils as _gcu
# --- PATCH for Gradio utils schema bug ---
_orig_json = _gcu.json_schema_to_python_type
_orig_get = _gcu.get_type
def _patched_json_to_py(schema, defs=None):
if not isinstance(schema, dict):
return "any"
try:
return _orig_json(schema, defs)
except Exception:
return "any"
def _patched_get_type(schema):
if not isinstance(schema, dict):
return "any"
try:
return _orig_get(schema)
except Exception:
return "any"
_gcu.json_schema_to_python_type = _patched_json_to_py
_gcu.get_type = _patched_get_type
# --- SQLite Database initialization ---
DB_NAME = "vocabulary.db"
conn = sqlite3.connect(DB_NAME)
conn.execute("""
CREATE TABLE IF NOT EXISTS vocabulary (
user_id TEXT,
language TEXT,
word TEXT,
timestamp TEXT,
UNIQUE(user_id, language, word)
)
""")
conn.commit()
conn.close()
# --- Save word to database ---
def save_word_to_db(user_id: str, language: str, word: str):
ts = datetime.datetime.now().isoformat()
conn = sqlite3.connect(DB_NAME)
conn.execute(
"INSERT OR IGNORE INTO vocabulary (user_id, language, word, timestamp) VALUES (?, ?, ?, ?)",
(user_id, language, word, ts)
)
conn.commit()
conn.close()
# --- Retrieve known words for user/language ---
def get_user_vocabulary(user_id: str, language: str) -> set[str]:
conn = sqlite3.connect(DB_NAME)
rows = conn.execute(
"SELECT word FROM vocabulary WHERE user_id=? AND language=?",
(user_id, language)
).fetchall()
conn.close()
return {r[0] for r in rows}
# --- Load NLP models ---
nlp = spacy.load("es_core_news_lg")
tokenizer = AutoTokenizer.from_pretrained("SkitCon/gec-spanish-BARTO-COWS-L2H")
model = BartForConditionalGeneration.from_pretrained("SkitCon/gec-spanish-BARTO-COWS-L2H")
gpt2_tokenizer_es = AutoTokenizer.from_pretrained("mrm8488/spanish-gpt2")
gpt2_model_es = AutoModelForCausalLM.from_pretrained("mrm8488/spanish-gpt2")
gpt2_tokenizer_en = AutoTokenizer.from_pretrained("gpt2")
gpt2_model_en = AutoModelForCausalLM.from_pretrained("gpt2")
lemmatizer = WordNetLemmatizer()
# ---Log to CSV (grammar corrections and sentence suggestions) ---
def log_to_csv(filename, row, fieldnames):
file_exists = os.path.isfile(filename)
with open(filename, "a", newline='', encoding="utf-8") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(row)
# --- File Import ---
def import_file(path: str) -> str:
ext = os.path.splitext(path)[1].lower()
if ext == ".pdf":
pages = []
with pdfplumber.open(path) as pdf:
for p in pdf.pages:
pages.append(p.extract_text() or "")
return "\n".join(pages)
if ext == ".csv":
df = pd.read_csv(path)
if "text" in df:
return "\n".join(df["text"].astype(str))
raise ValueError("CSV saknar kolumnen 'text'.")
if ext == ".txt":
return open(path, encoding="utf-8").read()
raise ValueError(f"Okänt filformat: {ext}")
# --- Grammar Correction ---
def correct_grammar(text: str, language: str) -> str:
if language == "es":
corrected = []
for sent in nlp(text).sents:
s = sent.text.strip()
if not s: continue
inp = tokenizer(s, return_tensors="pt", truncation=True, padding=True)
out = model.generate(
**inp,
max_new_tokens=inp.input_ids.shape[1],
num_beams=5,
early_stopping=True
)
corrected.append(tokenizer.decode(out[0], skip_special_tokens=True))
return " ".join(corrected)
# English: LanguageTool API
resp = requests.post(
"https://api.languagetool.org/v2/check",
data={"text": text, "language": language}
).json()
for m in reversed(resp.get("matches", [])):
off, ln = m["offset"], m["length"]
repls = m.get("replacements", [])
val = repls[0]["value"] if repls else ""
text = text[:off] + val + text[off+ln:]
return text
# --- Analyze known and unknown words ---
def analyze_text(text: str, user_id: str, language: str):
toks = word_tokenize(text)
lems = [lemmatizer.lemmatize(w.lower()) for w in toks if w.isalpha()]
vocab = get_user_vocabulary(user_id, language)
known = [w for w in lems if w in vocab]
unknown = [w for w in lems if w not in vocab]
return known, unknown
# --- Generate sentence using GPT2 based on unknown words ---
def generate_coherent_sentence(text: str, user_id: str, language: str, num_unknown=2) -> str:
kn, un = analyze_text(text, user_id, language)
if not un:
return "Inga okända ord att generera mening med."
chosen = random.sample(un, min(num_unknown, len(un)))
if language == "es":
prompt = "Escribe una sola frase clara que incluya estas palabras: " + ", ".join(chosen) + "."
tokenizer = gpt2_tokenizer_es
model = gpt2_model_es
else:
prompt = "Write one clear sentence that includes the following words: " + ", ".join(chosen) + "."
tokenizer = gpt2_tokenizer_en
model = gpt2_model_en
inp = tokenizer(prompt, return_tensors="pt", truncation=True)
outs = model.generate(
**inp,
max_new_tokens=50,
do_sample=True,
top_k=50,
top_p=0.95
)
gen = tokenizer.decode(outs[0], skip_special_tokens=True)
body = gen[len(prompt):].strip() if gen.startswith(prompt) else gen.strip()
sentence = (body.split(".")[0].strip() + ".") if "." in body else body
if not any(c.isalpha() for c in sentence):
return "Misslyckades att generera meningsfull övningsmening."
return sentence
# --- Gradio process callback ---
def process(user, language, txt, file, do_grammar, do_save):
try:
if txt and txt.strip():
text = txt.strip()
elif file:
text = import_file(file.name)
else:
return "", "", "", "Ingen text angiven.", ""
out = correct_grammar(text, language) if do_grammar else text
kn, un = analyze_text(out, user, language)
status = ""
if do_save and un:
for w in un:
save_word_to_db(user, language, w)
status = f"Sparade {len(un)} ord."
# Logga grammatikrättning till CSV
log_to_csv(
"grammarlog.csv",
{
"user": user, "language": language, "input": text,
"output": out, "timestamp": datetime.datetime.now().isoformat()
},
["user", "language", "input", "output", "timestamp"]
)
return out, ", ".join(kn), ", ".join(un), status, ""
except Exception as e:
import traceback
tb = traceback.format_exc()
return "", "", "", f"FEL i process:\n{tb}", ""
# --- Sentence generation callback ---
def coherent_fn(user, language, txt, num):
try:
suggestion = generate_coherent_sentence(txt or "", user, language, num)
# Logga övningsförslag till CSV
log_to_csv(
"sentencelog.csv",
{
"user": user, "language": language, "input": txt,
"output": suggestion, "timestamp": datetime.datetime.now().isoformat()
},
["user", "language", "input", "output", "timestamp"]
)
return suggestion
except Exception as e:
return f"Fel vid generering: {e}"
# --- Gradio UI ---
demo = gr.Blocks()
with demo:
gr.Markdown("### 🌟 Språkinlärningsapp med användare & flerspråkighet")
with gr.Row():
user_input = gr.Textbox(label="Användarnamn", placeholder="Ditt namn här")
lang_dd = gr.Dropdown(choices=["es", "en"], value="es", label="Språk")
with gr.Column():
manual_input = gr.Textbox(lines=4, label="Skriv/klistra in text")
file_input = gr.File(file_types=[".txt",".csv",".pdf"], label="Importera fil")
grammar_cb = gr.Checkbox(label="Grammatikrättning")
autosave_cb = gr.Checkbox(label="Spara okända ord")
run_btn = gr.Button("Kör analys & korrigering")
num_slider = gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Antal okända ord för övning")
coherent_btn = gr.Button("Koherent övningsmening")
corr_out = gr.Textbox(label="Korrigerad text", lines=4)
known_out = gr.Textbox(label="Kända ord")
unknown_out = gr.Textbox(label="Okända ord")
status_out = gr.Textbox(label="Status")
coherent_out = gr.Textbox(label="Koherent övningsmening")
# --- Knapparnas click‐kopplingar ---
run_btn.click(
fn=process,
inputs=[user_input, lang_dd, manual_input, file_input, grammar_cb, autosave_cb],
outputs=[corr_out, known_out, unknown_out, status_out, coherent_out]
)
coherent_btn.click(
fn=coherent_fn,
inputs=[user_input, lang_dd, manual_input, num_slider],
outputs=[coherent_out]
)
#Make sure to change language for the textfile to be analyzed in its target language
# --- Start app ---
if __name__ == "__main__":
url = demo.launch(share=True, inbrowser=True, prevent_thread_lock=True)
print("Appen körs på:", url)
|