File size: 13,667 Bytes
522606a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2022 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


@dataclass
class RePaintSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from
             the current timestep. `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: torch.FloatTensor


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class RePaintScheduler(SchedulerMixin, ConfigMixin):
    """
    RePaint is a schedule for DDPM inpainting inside a given mask.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    For more details, see the original paper: https://arxiv.org/pdf/2201.09865.pdf

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        eta (`float`):
            The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 -0.0 is DDIM and
            1.0 is DDPM scheduler respectively.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.

    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        eta: float = 0.0,
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
    ):
        if trained_betas is not None:
            self.betas = torch.from_numpy(trained_betas)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)

        self.final_alpha_cumprod = torch.tensor(1.0)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())

        self.eta = eta

    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        jump_length: int = 10,
        jump_n_sample: int = 10,
        device: Union[str, torch.device] = None,
    ):
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
        self.num_inference_steps = num_inference_steps

        timesteps = []

        jumps = {}
        for j in range(0, num_inference_steps - jump_length, jump_length):
            jumps[j] = jump_n_sample - 1

        t = num_inference_steps
        while t >= 1:
            t = t - 1
            timesteps.append(t)

            if jumps.get(t, 0) > 0:
                jumps[t] = jumps[t] - 1
                for _ in range(jump_length):
                    t = t + 1
                    timesteps.append(t)

        timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps)
        self.timesteps = torch.from_numpy(timesteps).to(device)

    def _get_variance(self, t):
        prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from
        # https://arxiv.org/pdf/2006.11239.pdf) and sample from it to get
        # previous sample x_{t-1} ~ N(pred_prev_sample, variance) == add
        # variance to pred_sample
        # Is equivalent to formula (16) in https://arxiv.org/pdf/2010.02502.pdf
        # without eta.
        # variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        original_image: torch.FloatTensor,
        mask: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[RePaintSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned
                diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            original_image (`torch.FloatTensor`):
                the original image to inpaint on.
            mask (`torch.FloatTensor`):
                the mask where 0.0 values define which part of the original image to inpaint (change).
            generator (`torch.Generator`, *optional*): random number generator.
            return_dict (`bool`): option for returning tuple rather than
                DDPMSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.RePaintSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.RePaintSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.

        """
        t = timestep
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5

        # 3. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

        # We choose to follow RePaint Algorithm 1 to get x_{t-1}, however we
        # substitute formula (7) in the algorithm coming from DDPM paper
        # (formula (4) Algorithm 2 - Sampling) with formula (12) from DDIM paper.
        # DDIM schedule gives the same results as DDPM with eta = 1.0
        # Noise is being reused in 7. and 8., but no impact on quality has
        # been observed.

        # 5. Add noise
        noise = torch.randn(
            model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device
        )
        std_dev_t = self.eta * self._get_variance(timestep) ** 0.5

        variance = 0
        if t > 0 and self.eta > 0:
            variance = std_dev_t * noise

        # 6. compute "direction pointing to x_t" of formula (12)
        # from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output

        # 7. compute x_{t-1} of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance

        # 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf
        prev_known_part = (alpha_prod_t**0.5) * original_image + ((1 - alpha_prod_t) ** 0.5) * noise

        # 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf
        pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part

        if not return_dict:
            return (
                pred_prev_sample,
                pred_original_sample,
            )

        return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

    def undo_step(self, sample, timestep, generator=None):
        n = self.config.num_train_timesteps // self.num_inference_steps

        for i in range(n):
            beta = self.betas[timestep + i]
            noise = torch.randn(sample.shape, generator=generator, device=sample.device)

            # 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf
            sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise

        return sample

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.")

    def __len__(self):
        return self.config.num_train_timesteps