File size: 6,436 Bytes
522606a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput


class IPNDMScheduler(SchedulerMixin, ConfigMixin):
    """
    Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion
    [library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296)

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
    """

    order = 1

    @register_to_config
    def __init__(
        self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None
    ):
        # set `betas`, `alphas`, `timesteps`
        self.set_timesteps(num_train_timesteps)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at formula (9), (12), (13) and the Algorithm 2.
        self.pndm_order = 4

        # running values
        self.ets = []

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        self.num_inference_steps = num_inference_steps
        steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1]
        steps = torch.cat([steps, torch.tensor([0.0])])

        if self.config.trained_betas is not None:
            self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32)
        else:
            self.betas = torch.sin(steps * math.pi / 2) ** 2

        self.alphas = (1.0 - self.betas**2) ** 0.5

        timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1]
        self.timesteps = timesteps.to(device)

        self.ets = []

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
            True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        timestep_index = (self.timesteps == timestep).nonzero().item()
        prev_timestep_index = timestep_index + 1

        ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
        self.ets.append(ets)

        if len(self.ets) == 1:
            ets = self.ets[-1]
        elif len(self.ets) == 2:
            ets = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

        prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets)

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

    def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets):
        alpha = self.alphas[timestep_index]
        sigma = self.betas[timestep_index]

        next_alpha = self.alphas[prev_timestep_index]
        next_sigma = self.betas[prev_timestep_index]

        pred = (sample - sigma * ets) / max(alpha, 1e-8)
        prev_sample = next_alpha * pred + ets * next_sigma

        return prev_sample

    def __len__(self):
        return self.config.num_train_timesteps