File size: 5,489 Bytes
522606a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Pytorch Multi-Scale Structural Similarity Index (SSIM)
# This code is written by jorge-pessoa (https://github.com/jorge-pessoa/pytorch-msssim)
# MIT licence
import math
from math import exp

import torch
import torch.nn.functional as F
from torch.autograd import Variable


# +++++++++++++++++++++++++++++++++++++
#           SSIM
# -------------------------------------

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
    return gauss / gauss.sum()


def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window


def _ssim(img1, img2, window, window_size, channel, size_average=True, full=False):
    padd = 0

    mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
    mu2 = F.conv2d(img2, window, padding=padd, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2

    C1 = 0.01 ** 2
    C2 = 0.03 ** 2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    v1 = 2.0 * sigma12 + C2
    v2 = sigma1_sq + sigma2_sq + C2
    cs = torch.mean(v1 / v2)

    if size_average:
        ret = ssim_map.mean()
    else:
        ret = ssim_map.mean(1).mean(1).mean(1)

    if full:
        return ret, cs
    return ret


class SSIM(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.window = create_window(window_size, self.channel)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.size()

        if channel == self.channel and self.window.data.type() == img1.data.type():
            window = self.window
        else:
            window = create_window(self.window_size, channel)

            if img1.is_cuda:
                window = window.cuda(img1.get_device())
            window = window.type_as(img1)

            self.window = window
            self.channel = channel

        return _ssim(img1, img2, window, self.window_size, channel, self.size_average)


def ssim(img1, img2, window_size=11, size_average=True, full=False):
    (_, channel, height, width) = img1.size()

    real_size = min(window_size, height, width)
    window = create_window(real_size, channel)

    if img1.is_cuda:
        window = window.cuda(img1.get_device())
    window = window.type_as(img1)

    return _ssim(img1, img2, window, real_size, channel, size_average, full=full)


def msssim(img1, img2, window_size=11, size_average=True):
    # TODO: fix NAN results
    if img1.size() != img2.size():
        raise RuntimeError('Input images must have the same shape (%s vs. %s).' %
                           (img1.size(), img2.size()))
    if len(img1.size()) != 4:
        raise RuntimeError('Input images must have four dimensions, not %d' %
                           len(img1.size()))

    weights = torch.tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=img1.dtype)
    if img1.is_cuda:
        weights = weights.cuda(img1.get_device())

    levels = weights.size()[0]
    mssim = []
    mcs = []
    for _ in range(levels):
        sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True)
        mssim.append(sim)
        mcs.append(cs)

        img1 = F.avg_pool2d(img1, (2, 2))
        img2 = F.avg_pool2d(img2, (2, 2))

    mssim = torch.stack(mssim)
    mcs = torch.stack(mcs)
    return (torch.prod(mcs[0:levels - 1] ** weights[0:levels - 1]) *
            (mssim[levels - 1] ** weights[levels - 1]))


class MSSSIM(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True, channel=3):
        super(MSSSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = channel

    def forward(self, img1, img2):
        # TODO: store window between calls if possible
        return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)


def calc_psnr(sr, hr, scale=0, benchmark=False):
    # adapt from EDSR: https://github.com/thstkdgus35/EDSR-PyTorch
    diff = (sr - hr).data
    if benchmark:
        shave = scale
        if diff.size(1) > 1:
            convert = diff.new(1, 3, 1, 1)
            convert[0, 0, 0, 0] = 65.738
            convert[0, 1, 0, 0] = 129.057
            convert[0, 2, 0, 0] = 25.064
            diff.mul_(convert).div_(256)
            diff = diff.sum(dim=1, keepdim=True)
    else:
        shave = scale + 6

    valid = diff[:, :, shave:-shave, shave:-shave]
    mse = valid.pow(2).mean()

    return -10 * math.log10(mse)


# +++++++++++++++++++++++++++++++++++++
#           PSNR      
# -------------------------------------
from torch import nn


def psnr(predict, target):
    with torch.no_grad():
        criteria = nn.MSELoss()
        mse = criteria(predict, target)
        return -10 * torch.log10(mse)