File size: 7,293 Bytes
522606a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa

from ..utils import DummyObject, requires_backends


class AltDiffusionImg2ImgPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class AltDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class CycleDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class LDMTextToImagePipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionImageVariationPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionInpaintPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionPipelineSafe(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class StableDiffusionUpscalePipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VersatileDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])


class VQDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch", "transformers"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch", "transformers"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch", "transformers"])