Spaces:
Runtime error
Runtime error
File size: 16,151 Bytes
522606a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright 2022 Microsoft and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple, Union
import torch
from diffusers import Transformer2DModel, VQModel
from diffusers.schedulers.scheduling_vq_diffusion import VQDiffusionScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...modeling_utils import ModelMixin
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin):
"""
Utility class for storing learned text embeddings for classifier free sampling
"""
@register_to_config
def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None):
super().__init__()
self.learnable = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
embeddings = torch.zeros(length, hidden_size)
else:
embeddings = None
self.embeddings = torch.nn.Parameter(embeddings)
class VQDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using VQ Diffusion
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vqvae ([`VQModel`]):
Vector Quantized Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent
representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. VQ Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
transformer ([`Transformer2DModel`]):
Conditional transformer to denoise the encoded image latents.
scheduler ([`VQDiffusionScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
vqvae: VQModel
text_encoder: CLIPTextModel
tokenizer: CLIPTokenizer
transformer: Transformer2DModel
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings
scheduler: VQDiffusionScheduler
def __init__(
self,
vqvae: VQModel,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
transformer: Transformer2DModel,
scheduler: VQDiffusionScheduler,
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
uncond_embeddings = self.learned_classifier_free_sampling_embeddings.embeddings
uncond_embeddings = uncond_embeddings.unsqueeze(0).repeat(batch_size, 1, 1)
else:
uncond_tokens = [""] * batch_size
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# See comment for normalizing text embeddings
uncond_embeddings = uncond_embeddings / uncond_embeddings.norm(dim=-1, keepdim=True)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 100,
guidance_scale: float = 5.0,
truncation_rate: float = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
) -> Union[ImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
`truncation_rate` are set to zero.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor` of shape (batch), *optional*):
Pre-generated noisy latents to be used as inputs for image generation. Must be valid embedding indices.
Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will
be generated of completely masked latent pixels.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput `] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# get the initial completely masked latents unless the user supplied it
latents_shape = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
mask_class = self.transformer.num_vector_embeds - 1
latents = torch.full(latents_shape, mask_class).to(self.device)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f" {self.transformer.num_vector_embeds - 1} (inclusive)."
)
latents = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps_tensor = self.scheduler.timesteps.to(self.device)
sample = latents
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the sample if we are doing classifier free guidance
latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
model_output = self.transformer(
latent_model_input, encoder_hidden_states=text_embeddings, timestep=t
).sample
if do_classifier_free_guidance:
model_output_uncond, model_output_text = model_output.chunk(2)
model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(model_output, dim=1, keepdim=True)
model_output = self.truncate(model_output, truncation_rate)
# remove `log(0)`'s (`-inf`s)
model_output = model_output.clamp(-70)
# compute the previous noisy sample x_t -> x_t-1
sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, sample)
embedding_channels = self.vqvae.config.vq_embed_dim
embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape)
image = self.vqvae.decode(embeddings, force_not_quantize=True).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def truncate(self, log_p_x_0: torch.FloatTensor, truncation_rate: float) -> torch.FloatTensor:
"""
Truncates log_p_x_0 such that for each column vector, the total cumulative probability is `truncation_rate` The
lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero.
"""
sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True)
sorted_p_x_0 = torch.exp(sorted_log_p_x_0)
keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
all_true = torch.full_like(keep_mask[:, 0:1, :], True)
keep_mask = torch.cat((all_true, keep_mask), dim=1)
keep_mask = keep_mask[:, :-1, :]
keep_mask = keep_mask.gather(1, indices.argsort(1))
rv = log_p_x_0.clone()
rv[~keep_mask] = -torch.inf # -inf = log(0)
return rv
|