File size: 20,923 Bytes
7c08dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import tempfile
import shutil
from dotenv import load_dotenv
from utils.src.utils import get_json_from_response
from concurrent.futures import ThreadPoolExecutor, as_completed
import json
from camel.models import ModelFactory
from PosterAgent.gen_pptx_code import generate_poster_code
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from utils.src.utils import ppt_to_images
from PIL import Image
from utils.wei_utils import *
from utils.pptx_utils import *
from utils.critic_utils import *
import yaml
from jinja2 import Environment, StrictUndefined
import argparse
load_dotenv()
MAX_ATTEMPT = 10
def gen_content_process_section(
section_name,
outline,
raw_content,
raw_outline,
template,
create_actor_agent,
MAX_ATTEMPT
):
"""
Process a single section in its own thread or process.
Returns (section_name, result_json, total_input_token, total_output_token).
"""
# Create a fresh ActorAgent instance for each parallel call
actor_agent = create_actor_agent()
section_outline = ''
num_attempts = 0
total_input_token = 0
total_output_token = 0
result_json = None
while True:
print(f"[Thread] Generating content for section: {section_name}")
if len(section_outline) == 0:
# Initialize the section outline
section_outline = json.dumps(outline[section_name], indent=4)
# Render prompt using Jinja template
jinja_args = {
'json_outline': section_outline,
'json_content': raw_content,
}
prompt = template.render(**jinja_args)
# Step the actor_agent and track tokens
response = actor_agent.step(prompt)
input_token, output_token = account_token(response)
total_input_token += input_token
total_output_token += output_token
# Parse JSON and possibly adjust text length
result_json = get_json_from_response(response.msgs[0].content)
new_section_outline, suggested = generate_length_suggestions(
result_json,
json.dumps(outline[section_name]),
raw_outline[section_name]
)
section_outline = json.dumps(new_section_outline, indent=4)
if not suggested:
# No more adjustments needed
break
print(f"[Thread] Adjusting text length for section: {section_name}...")
num_attempts += 1
if num_attempts >= MAX_ATTEMPT:
break
return section_name, result_json, total_input_token, total_output_token
def gen_content_parallel_process_sections(
sections,
outline,
raw_content,
raw_outline,
template,
create_actor_agent,
MAX_ATTEMPT=3
):
"""
Parallelize the section processing using ThreadPoolExecutor.
"""
poster_content = {}
total_input_token = 0
total_output_token = 0
# Create a pool of worker threads (or processes)
with ThreadPoolExecutor() as executor:
futures = []
# Submit each section to be processed in parallel
for section_name in sections:
futures.append(
executor.submit(
gen_content_process_section,
section_name,
outline,
raw_content,
raw_outline,
template,
create_actor_agent,
MAX_ATTEMPT
)
)
# Collect results as they complete
for future in as_completed(futures):
section_name, result_json, sec_input_token, sec_output_token = future.result()
poster_content[section_name] = result_json
total_input_token += sec_input_token
total_output_token += sec_output_token
return poster_content, total_input_token, total_output_token
def render_textbox(text_arrangement, textbox_content, tmp_dir):
arrangement = copy.deepcopy(text_arrangement)
arrangement['x'] = 1
arrangement['y'] = 1
poster_code = generate_poster_code(
[],
[arrangement],
[],
presentation_object_name='poster_presentation',
slide_object_name='poster_slide',
utils_functions=utils_functions,
slide_width=text_arrangement['width'] + 3,
slide_height=text_arrangement['height'] + 3,
img_path='placeholder.jpg',
save_path=f'{tmp_dir}/poster.pptx',
visible=True,
content=textbox_content,
check_overflow=True,
tmp_dir=tmp_dir,
)
output, err = run_code(poster_code)
ppt_to_images(f'{tmp_dir}/poster.pptx', tmp_dir, output_type='jpg')
img = Image.open(f'{tmp_dir}/poster.jpg')
return img
def gen_poster_title_content(args, actor_config):
total_input_token, total_output_token = 0, 0
raw_content = json.load(open(f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_raw_content.json', 'r'))
actor_agent_name = 'poster_title_agent'
title_string = raw_content['meta']
with open(f'utils/prompt_templates/{actor_agent_name}.yaml', "r") as f:
content_config = yaml.safe_load(f)
jinja_env = Environment(undefined=StrictUndefined)
template = jinja_env.from_string(content_config["template"])
if args.model_name_t == 'vllm_qwen':
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config'],
url=actor_config['url'],
)
else:
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config']
)
actor_sys_msg = content_config['system_prompt']
actor_agent = ChatAgent(
system_message=actor_sys_msg,
model=actor_model,
message_window_size=30
)
jinja_args = {
'title_string': title_string,
'title_font_size': getattr(args, 'poster_title_font_size', None) or getattr(args, 'title_font_size', None),
'author_font_size': getattr(args, 'poster_author_font_size', None) or getattr(args, 'author_font_size', None),
}
prompt = template.render(**jinja_args)
# Step the actor_agent and track tokens
actor_agent.reset()
response = actor_agent.step(prompt)
input_token, output_token = account_token(response)
total_input_token += input_token
total_output_token += output_token
result_json = get_json_from_response(response.msgs[0].content)
return result_json, total_input_token, total_output_token
def gen_bullet_point_content(args, actor_config, critic_config, agent_modify=True, tmp_dir='tmp'):
import json, yaml, copy, threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from PIL import Image
from jinja2 import Environment, StrictUndefined
# ----------------------- Load data & configs -----------------------
total_input_token_t = total_output_token_t = 0
total_input_token_v = total_output_token_v = 0
raw_content = json.load(open(f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_raw_content.json', 'r'))
with open(f'tree_splits/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_tree_split_{args.index}.json', 'r') as f:
tree_split_results = json.load(f)
panels = tree_split_results['panels']
text_arrangement_list = tree_split_results['text_arrangement_inches']
actor_agent_name = 'bullet_point_agent'
if args.model_name_v == 'vllm_qwen_vl':
critic_agent_name = 'critic_overlap_agent_v3_short'
else:
critic_agent_name = 'critic_overlap_agent_v3'
with open(f"utils/prompt_templates/{actor_agent_name}.yaml", "r") as f:
content_config = yaml.safe_load(f)
with open(f"utils/prompt_templates/{critic_agent_name}.yaml", "r") as f:
critic_content_config = yaml.safe_load(f)
jinja_env = Environment(undefined=StrictUndefined)
template = jinja_env.from_string(content_config["template"])
critic_template = jinja_env.from_string(critic_content_config["template"])
# Preload images once (each worker can reopen if needed, or just pass paths)
neg_img_path = 'assets/overflow_example_v2/neg.jpg'
pos_img_path = 'assets/overflow_example_v2/pos.jpg'
# Group text arrangements by panel_id for O(1) lookup in workers
from collections import defaultdict
textboxes_by_panel = defaultdict(list)
for ta in text_arrangement_list:
textboxes_by_panel[ta['panel_id']].append(ta)
# Ensure deterministic order inside each panel
for k in textboxes_by_panel:
textboxes_by_panel[k] = sorted(textboxes_by_panel[k], key=lambda x: x.get('textbox_id', 0))
# ----------------------- Worker (defined INSIDE main fn) -----------------------
def _process_section(i):
"""
Returns:
(i, result_json, t_in, t_out, v_in, v_out)
"""
local_t_in = local_t_out = 0
local_v_in = local_v_out = 0
arrangement = panels[i]
num_textboxes = 2 if arrangement.get('gp', 0) > 0 else 1
local_tmp_dir = tempfile.mkdtemp(prefix=f"sec_{i}_", dir=tmp_dir)
jinja_args = {
'summary_of_section': raw_content['sections'][i]['content'],
'number_of_textboxes': num_textboxes,
'section_title': raw_content['sections'][i]['title'],
'bullet_font_size': args.bullet_font_size,
'section_title_font_size': args.section_title_font_size,
}
target_textboxes = textboxes_by_panel[i][1:] # skip first (section title)
total_expected_length = sum(tb['num_chars'] for tb in target_textboxes)
# Create fresh models & agents per thread for safety
if args.model_name_t.startswith('vllm_qwen'):
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config'],
url=actor_config['url'],
)
else:
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config']
)
if args.model_name_v.startswith('vllm_qwen'):
critic_model = ModelFactory.create(
model_platform=critic_config['model_platform'],
model_type=critic_config['model_type'],
model_config_dict=critic_config['model_config'],
url=critic_config['url'],
)
else:
critic_model = ModelFactory.create(
model_platform=critic_config['model_platform'],
model_type=critic_config['model_type'],
model_config_dict=critic_config['model_config']
)
actor_agent = ChatAgent(system_message=content_config['system_prompt'], model=actor_model, message_window_size=30)
critic_agent = ChatAgent(system_message=critic_content_config['system_prompt'], model=critic_model, message_window_size=10)
prompt = template.render(**jinja_args)
actor_agent.reset()
response = actor_agent.step(prompt)
t_in, t_out = account_token(response)
local_t_in += t_in
local_t_out += t_out
result_json = get_json_from_response(response.msgs[0].content)
max_attempts = 5
num_attempts = 0
old_result_json = copy.deepcopy(result_json)
# Length control loop
while args.estimate_chars:
num_attempts += 1
if num_attempts > max_attempts:
result_json = old_result_json
break
try:
total_bullet_length = 0
for j in range(num_textboxes):
bullet_content_key = f'textbox{j + 1}'
total_bullet_length += compute_bullet_length(result_json[bullet_content_key])
except Exception:
result_json = old_result_json
break
if total_bullet_length > total_expected_length:
percentage_to_shrink = int((total_bullet_length - total_expected_length) / total_bullet_length * 100)
percentage_to_shrink = min(90, percentage_to_shrink + 10)
old_result_json = copy.deepcopy(result_json)
response = actor_agent.step('Too long, please shorten the bullet points by ' + str(percentage_to_shrink) + '%.')
t_in, t_out = account_token(response)
local_t_in += t_in
local_t_out += t_out
result_json = get_json_from_response(response.msgs[0].content)
else:
break
critic_prompt = critic_template.render()
bullet_contents = ['textbox1'] + (['textbox2'] if num_textboxes == 2 else [])
# Visual overflow/blank detection & correction
for j, text_arrangement in enumerate(target_textboxes[:num_textboxes]):
bullet_content = bullet_contents[j]
curr_round = 0
while True:
if args.ablation_no_commenter:
break
curr_round += 1
img = render_textbox(text_arrangement, result_json[bullet_content], local_tmp_dir)
if args.model_name_v.startswith('vllm_qwen') or args.ablation_no_example:
critic_msg = BaseMessage.make_user_message(
role_name="User",
content=critic_prompt,
image_list=[img],
)
else:
critic_msg = BaseMessage.make_user_message(
role_name="User",
content=critic_prompt,
image_list=[Image.open(neg_img_path), Image.open(pos_img_path), img],
)
critic_agent.reset()
response = critic_agent.step(critic_msg)
v_in, v_out = account_token(response)
local_v_in += v_in
local_v_out += v_out
decision = response.msgs[0].content.lower()
if decision in ['1', '1.', '"1"', "'1'"]:
if curr_round > 10:
print(f'Section {i}: Too many rounds of modification, breaking...')
break
if agent_modify:
print(f'Section {i}: Text overflow detected, modifying...')
modify_message = f'{bullet_content} is too long, please shorten that part, other content should stay the same. Return the entire modified JSON.'
response = actor_agent.step(modify_message)
t_in, t_out = account_token(response)
local_t_in += t_in
local_t_out += t_out
result_json = get_json_from_response(response.msgs[0].content)
else:
# naive truncate
result_json[bullet_content] = result_json[bullet_content][:-1]
continue
elif decision in ['2', '2.', '"2"', "'2'"]:
if args.no_blank_detection:
print(f'Section {i}: No blank space detection, skipping...')
break
if curr_round > 10:
print(f'Section {i}: Too many rounds of modification, breaking...')
break
print(f'Section {i}: Too much blank space detected, modifying...')
modify_message = f'{bullet_content} is too short, please add one more bullet point, other content should stay the same. Return the entire modified JSON.'
response = actor_agent.step(modify_message)
t_in, t_out = account_token(response)
local_t_in += t_in
local_t_out += t_out
result_json = get_json_from_response(response.msgs[0].content)
else:
break
# Clean up temp dir
if local_tmp_dir:
try:
print(f'Section {i}: Cleaning up temp dir {local_tmp_dir}')
shutil.rmtree(local_tmp_dir)
except Exception as e:
print(f"Error cleaning up temp dir {local_tmp_dir}: {e}")
return i, result_json, local_t_in, local_t_out, local_v_in, local_v_out
# ----------------------- Parallel execution -----------------------
max_workers = getattr(args, 'max_workers', 4)
results = {}
lock = threading.Lock()
with ThreadPoolExecutor(max_workers=max_workers) as ex:
futures = {
ex.submit(_process_section, i): i
for i in range(1, len(raw_content['sections']))
}
for fut in as_completed(futures):
i, rjson, t_in, t_out, v_in, v_out = fut.result()
with lock:
results[i] = rjson
total_input_token_t += t_in
total_output_token_t += t_out
total_input_token_v += v_in
total_output_token_v += v_out
# ----------------------- Title generation (sequential) -----------------------
title_json, title_input_token, title_output_token = gen_poster_title_content(args, actor_config)
total_input_token_t += title_input_token
total_output_token_t += title_output_token
# ----------------------- Assemble & save -----------------------
bullet_point_content = [title_json]
for idx in range(1, len(raw_content['sections'])):
bullet_point_content.append(results[idx])
json.dump(
bullet_point_content,
open(f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_bullet_point_content_{args.index}.json', 'w'),
indent=2
)
return total_input_token_t, total_output_token_t, total_input_token_v, total_output_token_v
def gen_poster_content(args, actor_config):
total_input_token, total_output_token = 0, 0
raw_content = json.load(open(f'contents/{args.model_name}_{args.poster_name}_raw_content.json', 'r'))
agent_name = 'poster_content_agent'
with open(f"utils/prompt_templates/{agent_name}.yaml", "r") as f:
content_config = yaml.safe_load(f)
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config']
)
actor_sys_msg = content_config['system_prompt']
def create_actor_agent():
actor_agent = ChatAgent(
system_message=actor_sys_msg,
model=actor_model,
message_window_size=10
)
return actor_agent
outline = json.load(open(f'outlines/{args.model_name}_{args.poster_name}_outline_{args.index}.json', 'r'))
raw_outline = json.loads(json.dumps(outline))
outline_estimate_num_chars(outline)
outline = remove_hierarchy_and_id(outline)
sections = list(outline.keys())
sections = [s for s in sections if s != 'meta']
jinja_env = Environment(undefined=StrictUndefined)
template = jinja_env.from_string(content_config["template"])
poster_content = {}
poster_content, total_input_token, total_output_token = gen_content_parallel_process_sections(
sections,
outline,
raw_content,
raw_outline,
template,
create_actor_agent,
MAX_ATTEMPT=5
)
json.dump(poster_content, open(f'contents/{args.model_name}_{args.poster_name}_poster_content_{args.index}.json', 'w'), indent=2)
return total_input_token, total_output_token
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--poster_name', type=str, default=None)
parser.add_argument('--model_name', type=str, default='4o')
parser.add_argument('--poster_path', type=str, required=True)
parser.add_argument('--index', type=int, default=0)
parser.add_argument('--max_retry', type=int, default=3)
args = parser.parse_args()
actor_config = get_agent_config(args.model_name)
if args.poster_name is None:
args.poster_name = args.poster_path.split('/')[-1].replace('.pdf', '').replace(' ', '_')
input_token, output_token = gen_poster_content(args, actor_config)
print(f'Token consumption: {input_token} -> {output_token}')
|