Spaces:
Running
Running
File size: 5,536 Bytes
7fb2b0e 8262e10 7fb2b0e cd171df 7fb2b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import requests
import random
import warnings
from transformers import logging
import os
import tensorflow as tf
# Set environment configurations
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.get_logger().setLevel('ERROR')
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY is not set. Please add it to the Secrets in your Hugging Face Space settings.")
def segment_into_sentences_groq(passage):
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": "you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses"
},
{
"role": "user",
"content": f"you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses. here is the passage:{passage}"
}
],
"temperature": 1.0,
"max_tokens": 8192
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
if response.status_code == 200:
data = response.json()
try:
segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
sentences = segmented_text.split("1!2@3#")
return [sentence.strip() for sentence in sentences if sentence.strip()]
except (IndexError, KeyError):
raise ValueError("Unexpected response structure from Groq API.")
else:
raise ValueError(f"Groq API error: {response.text}")
class TextEnhancer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
self.grammar_pipeline = pipeline(
"text2text-generation",
model="Grammarly/coedit-large",
device=0 if self.device == "cuda" else -1
)
self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
def enhance_text(self, text, min_similarity=0.8, max_variations=3):
sentences = segment_into_sentences_groq(text)
enhanced_sentences = []
for sentence in sentences:
if not sentence.strip():
continue
inputs = self.paraphrase_tokenizer(
f"paraphrase: {sentence}",
return_tensors="pt",
padding=True,
max_length=150,
truncation=True
).to(self.device)
outputs = self.paraphrase_model.generate(
**inputs,
max_length=len(sentence.split()) + 20,
num_return_sequences=max_variations,
num_beams=max_variations,
temperature=0.7
)
paraphrases = [
self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
for output in outputs
]
sentence_embedding = self.similarity_model.encode(sentence)
paraphrase_embeddings = self.similarity_model.encode(paraphrases)
similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
valid_paraphrases = [
para for para, sim in zip(paraphrases, similarities[0])
if sim >= min_similarity
]
if valid_paraphrases:
corrected = self.grammar_pipeline(
valid_paraphrases[0],
max_length=150,
num_return_sequences=1
)[0]["generated_text"]
enhanced_sentences.append(corrected)
else:
enhanced_sentences.append(sentence)
enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
return enhanced_text
def create_interface():
enhancer = TextEnhancer()
def process_text(text, similarity_threshold):
try:
return enhancer.enhance_text(
text,
min_similarity=similarity_threshold / 100
)
except Exception as e:
return f"Error: {str(e)}"
interface = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Input Text", placeholder="Enter text to enhance...", lines=10),
gr.Slider(minimum=50, maximum=100, value=80, label="Minimum Semantic Similarity (%)")
],
outputs=gr.Textbox(label="Enhanced Text", lines=10),
title="Text Enhancement System",
description="Improve text quality while preserving original meaning"
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch()
|