File size: 5,536 Bytes
7fb2b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8262e10
 
 
7fb2b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd171df
7fb2b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import requests
import random
import warnings
from transformers import logging
import os
import tensorflow as tf

# Set environment configurations
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.get_logger().setLevel('ERROR')
warnings.filterwarnings("ignore")
logging.set_verbosity_error()

GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
    raise ValueError("GROQ_API_KEY is not set. Please add it to the Secrets in your Hugging Face Space settings.")

def segment_into_sentences_groq(passage):
    headers = {
        "Authorization": f"Bearer {GROQ_API_KEY}",
        "Content-Type": "application/json"
    }
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": "you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses"
            },
            {
                "role": "user",
                "content": f"you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses. here is the passage:{passage}"
            }
        ],
        "temperature": 1.0,
        "max_tokens": 8192
    }
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
    if response.status_code == 200:
        data = response.json()
        try:
            segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
            sentences = segmented_text.split("1!2@3#")
            return [sentence.strip() for sentence in sentences if sentence.strip()]
        except (IndexError, KeyError):
            raise ValueError("Unexpected response structure from Groq API.")
    else:
        raise ValueError(f"Groq API error: {response.text}")

class TextEnhancer:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
        self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
        self.grammar_pipeline = pipeline(
            "text2text-generation",
            model="Grammarly/coedit-large",
            device=0 if self.device == "cuda" else -1
        )
        self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)

    def enhance_text(self, text, min_similarity=0.8, max_variations=3):
        sentences = segment_into_sentences_groq(text)
        enhanced_sentences = []
        
        for sentence in sentences:
            if not sentence.strip():
                continue
            inputs = self.paraphrase_tokenizer(
                f"paraphrase: {sentence}",
                return_tensors="pt",
                padding=True,
                max_length=150,
                truncation=True
            ).to(self.device)
            outputs = self.paraphrase_model.generate(
                **inputs,
                max_length=len(sentence.split()) + 20,
                num_return_sequences=max_variations,
                num_beams=max_variations,
                temperature=0.7
            )
            paraphrases = [
                self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
                for output in outputs
            ]
            sentence_embedding = self.similarity_model.encode(sentence)
            paraphrase_embeddings = self.similarity_model.encode(paraphrases)
            similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
            valid_paraphrases = [
                para for para, sim in zip(paraphrases, similarities[0])
                if sim >= min_similarity
            ]
            if valid_paraphrases:
                corrected = self.grammar_pipeline(
                    valid_paraphrases[0],
                    max_length=150,
                    num_return_sequences=1
                )[0]["generated_text"]
                enhanced_sentences.append(corrected)
            else:
                enhanced_sentences.append(sentence)
        
        enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
        return enhanced_text

def create_interface():
    enhancer = TextEnhancer()
    
    def process_text(text, similarity_threshold):
        try:
            return enhancer.enhance_text(
                text,
                min_similarity=similarity_threshold / 100
            )
        except Exception as e:
            return f"Error: {str(e)}"
    
    interface = gr.Interface(
        fn=process_text,
        inputs=[
            gr.Textbox(label="Input Text", placeholder="Enter text to enhance...", lines=10),
            gr.Slider(minimum=50, maximum=100, value=80, label="Minimum Semantic Similarity (%)")
        ],
        outputs=gr.Textbox(label="Enhanced Text", lines=10),
        title="Text Enhancement System",
        description="Improve text quality while preserving original meaning"
    )
    
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch()