Spaces:
Running
Running
File size: 16,560 Bytes
8f3b56b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import json
import os
import cv2
import numpy as np
import math
import heapq
import datetime
from moviepy.editor import ImageSequenceClip
import tqdm
from utils import get_scene_dir_path, OBJECT_PICTURE_DIR
class Video_Generator():
def __init__(self):
self.frame_radius = 20
self.frame_thickness = 1
self.frame_outline_color = (0,0,0) #black
self.frame_filling_color = (255, 255, 255) #white
self.traj_count = {}
def get_img_coord(self, points, camera_pose, image_width, image_height):
transformation_matrix = compute_transformation_matrix(camera_pose)
camera_positions = world_to_camera(points, transformation_matrix)
projects_points = project_to_2d(camera_positions, camera_pose, image_width, image_height)
return projects_points
def draw_objframe(self, obj_type, point, background):
image = background
obj_path = os.path.join(OBJECT_PICTURE_DIR, '{}.png'.format(obj_type))
if not os.path.exists(obj_path):
obj_path = os.path.join(OBJECT_PICTURE_DIR, 'Phone.png')
obj_img = cv2.imread(obj_path)
#draw frame
center = (int(point[0]-1.2*self.frame_radius), int(point[1]-1.2*self.frame_radius))
cv2.circle(image, center, self.frame_radius, self.frame_filling_color, -1)
cv2.circle(image, center, self.frame_radius, self.frame_outline_color, self.frame_thickness)
theta = np.pi/8
line_start1 = (int(center[0]+self.frame_radius*np.sin(theta)), int(center[1]+self.frame_radius*np.cos(theta)))
line_start2 = (int(center[0]+self.frame_radius*np.cos(theta)), int(center[1]+self.frame_radius*np.sin(theta)))
line_end = (int(center[0] + 1.2*self.frame_radius), int(center[1] + 1.2*self.frame_radius))
cv2.line(image, line_start1, line_end, self.frame_outline_color, self.frame_thickness)
cv2.line(image, line_start2, line_end, self.frame_outline_color, self.frame_thickness)
cv2.circle(image, line_end, 3, (0,0,255), -1)
#put object
obj_resized = cv2.resize(obj_img, (self.frame_radius, self.frame_radius))
x_start = max(0, obj_resized.shape[0]//2-center[1])
x_end = min(obj_resized.shape[0], obj_resized.shape[0]//2 + image.shape[0] - center[1])
y_start = max(0, obj_resized.shape[1]//2-center[0])
y_end = min(obj_resized.shape[1], obj_resized.shape[1]//2 + image.shape[1] - center[0])
img_x_start = max(0, center[1]-obj_resized.shape[0]//2)
img_x_end = min(image.shape[0], center[1]+obj_resized.shape[0]//2)
img_y_start = max(0, center[0]-obj_resized.shape[1]//2)
img_y_end = min(image.shape[1], center[0]+obj_resized.shape[1]//2)
image[img_x_start:img_x_end, img_y_start: img_y_end] = obj_resized[x_start:x_end, y_start:y_end]
def add_description(self, activity_name, time, obj_list, receptacle_list, background):
image = background.copy()
descrpition_width = 300
description_bg = np.zeros((background.shape[0], descrpition_width,3), np.uint8)
res = np.hstack((image, description_bg))
font = cv2.FONT_HERSHEY_COMPLEX
font_scale = 0.5
font_color = (0,0,0)
thickness = 1
line_type = 8
# text_size = cv2.getTextSize(text,font, font_scale, line_type)[0]
text_x = background.shape[0] + 10
text_y = descrpition_width//2 -50
text_y = 50
line_interval = 30
cv2.rectangle(res, (background.shape[1],0), (background.shape[1]+descrpition_width, background.shape[0]), (255,255,255),-1)
texts = ['activity:', activity_name, 'time: ', str(time), 'object movement: ']
for i, text in enumerate(texts):
if i%2==0:
text_x = background.shape[0] + 10
font_color = (0,0,0)
else:
text_x = background.shape[0] + 30
font_color = (0,0,255)
cv2.putText(res, text, (text_x, text_y + i*line_interval), font, font_scale, font_color,thickness, line_type)
start_line = 5
for i in range(len(obj_list)):
obj = obj_list[i].split('|')[0]
recep = receptacle_list[i].split('|')[0]
# obj_move_text = '{} -> {}'.format(obj, recep)
text_x = background.shape[0] + 120
font_color = (0,0,255)
obj_text_size = cv2.getTextSize(obj, font, font_scale, thickness)[0][0]
cv2.putText(res, obj, (text_x - 20 - obj_text_size, text_y + (start_line+i)*line_interval), font, font_scale, font_color,thickness, line_type)
cv2.putText(res, '->', (text_x, text_y + (start_line+i)*line_interval), font, font_scale, font_color,thickness, line_type)
cv2.putText(res, recep, (text_x + 40, text_y + (start_line+i)*line_interval), font, font_scale, font_color,thickness, line_type)
return res
def draw_traj(self, info, image):
last_point = info['last_point']
point = info['point']
is_end = info['end']
is_arrow = info['arrow']
radius = 3
next_point = (int(point[0]), int(point[1]))
if last_point is None:
start_color = (0,0,255)
end_color = (255, 255, 0)
cv2.circle(image, next_point, radius, start_color, -1)
return
pre_point = (int(last_point[0]), int(last_point[1]))
line_color = (0,0,0)
line_thickness = 1
arrowcolor = (0,255,0)
arrow_thickness = 1
#count
count = self.traj_count.get((pre_point, next_point),0)
self.traj_count[(pre_point, next_point)] = count + 1
count = self.traj_count.get((next_point, pre_point),0)
self.traj_count[(next_point, pre_point)] = count + 1
step = 0.2
line_thickness = min(int(1 + count * step), 5)
#draw
cv2.line(image, pre_point, next_point, line_color, line_thickness)
if is_arrow:
cv2.arrowedLine(image, pre_point, next_point,arrowcolor,arrow_thickness,tipLength=1.5)
if is_end:
end_color = (255, 255, 0)
cv2.circle(image, next_point, radius, end_color, -1)
def get_multiobj_image(self, draw_infos, background):
image_list = []
if len(draw_infos)<=0:
return image_list, background
activity_name = draw_infos[0]['activity']
time = draw_infos[0]['time']
object_list = [info['object'] for info in draw_infos]
receptacle_list = [info['receptacle'] for info in draw_infos]
image_infos = []
for draw_info in draw_infos:
obj = draw_info['object'].split('|')[0]
points = draw_info['points']
last_point = None
for point_num, point in enumerate(points):
if point_num >= len(image_infos):
image_infos.append([])
image_infos[point_num].append({
'object':obj,
'point':point,
'last_point':last_point,
'end':point_num == len(points)-1,
'arrow':point_num == len(points)//3
})
last_point = (point[0], point[1])
image_with_traj = background.copy()
for image_info in image_infos:
#draw traj
for info in image_info:
self.draw_traj(info, image_with_traj)
#draw obj with frame
image = image_with_traj.copy()
for info in image_info:
self.draw_objframe(info['object'], info['point'], image)
image = self.add_description(activity_name, time, object_list, receptacle_list, image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_list.append(image)
return image_list, image_with_traj
def get_receptacle_position_from_meta(self, receptacle_id, metadata):
position = None
objects = metadata['objects']
for obj in objects:
if obj['objectId'] == receptacle_id:
position = obj['position']
break
return position
def get_distance(self, point1, point2):
return math.sqrt((point1['x'] - point2['x'])**2 + (point1['z'] - point2['z'])**2)
def get_nearest_point(self, point, reachable_points):
min_distance = 100000
nearest_point = None
for rp in reachable_points:
distance = self.get_distance(point, rp)
if distance < min_distance:
min_distance = distance
nearest_point = rp
return nearest_point
def get_path(self, start_position, end_position, reachable_positions):
res = []
res.append(start_position)
start_point = self.get_nearest_point(start_position, reachable_positions)
target_point = self.get_nearest_point(end_position, reachable_positions)
point_id = 0
open_list = [(0, point_id, start_point)]
came_from = {tuple((start_point['x'], start_point['z'])):0}
cost_so_far = {tuple((start_point['x'], start_point['z'])):0}
while open_list:
current = heapq.heappop(open_list)[-1]
if current == target_point:
break
for next_point in reachable_positions:
dis = self.get_distance(current, next_point)
if dis - 0.25 > 0.001:
continue
new_cost = cost_so_far[tuple((current['x'], current['z']))] + 1
if tuple((next_point['x'], next_point['z'])) not in cost_so_far or new_cost < cost_so_far[tuple((next_point['x'], next_point['z']))]:
cost_so_far[tuple((next_point['x'], next_point['z']))] = new_cost
priority = new_cost + abs(next_point['x'] - current['x']) + abs(next_point['z'] - current['z'])
point_id += 1
heapq.heappush(open_list, (priority, point_id, next_point))
came_from[tuple((next_point['x'], next_point['z']))] = current
path = []
current = target_point
while current != start_point:
path.append(current)
current = came_from[tuple((current['x'], current['z']))]
path.append(start_point)
path.reverse()
res.extend(path)
res.append(end_position)
return res
def init_obj_traj(self, metadata):
res = {}
for obj in metadata['objects']:
if obj['pickupable']:
parentReceptacle = obj['parentReceptacles']
if parentReceptacle is not None and 'Floor' in parentReceptacle:
parentReceptacle.remove('Floor')
res[obj['objectId']] = parentReceptacle[0] if (parentReceptacle is not None and len(parentReceptacle)) >0 else None
return res
def save_vedio(self, dynamic_info, background, camera_pose, metadata, reachable_positions, output_path):
object_traj = self.init_obj_traj(metadata)
self.traj_count = {}
image_list = []
paths_list = []
for time,timeinfo in tqdm.tqdm(dynamic_info.items()):
draw_infos = []
for info in timeinfo:
info['time'] = time
target_object_id = info['object']
target_receptacle_id = info['receptacle']
target_object_receptacle = object_traj[target_object_id]
if target_object_receptacle == target_receptacle_id:
continue
if target_object_receptacle is None:
for obj in metadata['objects']:
if obj['objectId'] == target_object_id:
start_position = obj['position']
break
else:
start_position = self.get_receptacle_position_from_meta(target_object_receptacle, metadata)
end_position = self.get_receptacle_position_from_meta(target_receptacle_id, metadata)
path = self.get_path(start_position, end_position, reachable_positions) #path 包括start, end
image_width = 300
image_height = 300
img_path = self.get_img_coord(path, camera_pose, image_width, image_height)
paths_list.append(img_path)
draw_info = {
'time':time,
'activity':info['activity'],
'object':target_object_id,
'receptacle':target_receptacle_id,
'points':img_path,
}
draw_infos.append(draw_info)
object_traj[target_object_id] = target_receptacle_id
time_images,image_with_traj = self.get_multiobj_image(draw_infos, background)
background = image_with_traj
image_list.extend(time_images)
clip = ImageSequenceClip(image_list, fps=30)
clip.write_videofile(str(output_path), fps=30, codec="libx264")
def get_dynamic_info(self, schedules):
res = {}
for day, day_schedules in schedules.items():
for activity in day_schedules:
activity_name = activity['activity']
start_time = activity['start_time']
content = activity['content']
for c in content:
c['activity'] = activity_name
time = datetime.datetime.combine(day, start_time)
if time not in res:
res[time] = []
res[time].extend(content)
return res
def generate(self, schedules, scene_file_name, vedio_path):
metadata, camera_pose, background, reachable_points = read_scene(scene_file_name)
schekeys = list(schedules.keys())
schedules_filter = {}
schedules_filter[schekeys[0]] = schedules[schekeys[0]]
dynamic_info = self.get_dynamic_info(schedules_filter)
self.save_vedio(dynamic_info, background, camera_pose, metadata, reachable_points, vedio_path)
def read_scene(scene_file_name):
data_dir = get_scene_dir_path(scene_file_name)
metadata = json.load(open(os.path.join(data_dir, 'metadata.json'),'r',encoding='utf-8'))
camera_pose = json.load(open(os.path.join(data_dir, 'camera_pose.json'),'r',encoding='utf-8'))
background = cv2.imread(os.path.join(data_dir, 'background.png'))
reachable_points = json.load(open(os.path.join(data_dir, 'reachablePositions.json'),'r',encoding='utf-8'))
return metadata, camera_pose, background, reachable_points
def compute_transformation_matrix(camera_pose):
position = camera_pose['position']
rotation = camera_pose['rotation']
translation_matrix = np.array([
[1, 0, 0, -position['x']],
[0, 1, 0, -position['y']],
[0, 0, 1, -position['z']],
[0, 0, 0, 1]
])
theta_x = np.radians(rotation['x'])
rotation_matrix_x = np.array([
[1, 0, 0, 0],
[0, np.cos(theta_x), -np.sin(theta_x), 0],
[0, np.sin(theta_x), np.cos(theta_x), 0],
[0, 0, 0, 1]
])
transformation_matrix = np.dot(rotation_matrix_x, translation_matrix)
return transformation_matrix
def world_to_camera(positions, transformation_matrix):
camera_positions = []
for pos in positions:
world_pos = np.array([pos['x'], pos['y'], pos['z'], 1])
camera_pos = np.dot(transformation_matrix, world_pos)
camera_positions.append(camera_pos)
return camera_positions
def project_to_2d(camera_positions, camera_pose, image_width, image_height):
fov = camera_pose['fieldOfView']
aspect_ratio = image_width / image_height
f = 1 / np.tan(np.radians(fov) / 2)
projection_matrix = np.array([
[f / aspect_ratio, 0, 0, 0],
[0, f, 0, 0],
[0, 0, 1, 0]
])
projected_points = []
for pos in camera_positions:
projected = np.dot(projection_matrix, pos)
projected /= projected[2]
x = (projected[0] + 1) * image_width / 2
y = (1 - projected[1]) * image_height / 2
x = image_width - x
projected_points.append((x, y))
return projected_points
|