File size: 19,182 Bytes
14ddc5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import argparse
import math
import random
import numpy as np
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
from PIL import Image
from util import *
from model.stylegan import lpips
from model.stylegan.model import Generator, Downsample
from model.vtoonify import VToonify, ConditionalDiscriminator
from model.bisenet.model import BiSeNet
from model.simple_augment import random_apply_affine
from model.stylegan.distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
# In the paper, --weight for each style is set as follows,
# cartoon: default
# caricature: default
# pixar: 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
# comic: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1
# arcane: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1
class TrainOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(description="Train VToonify-T")
self.parser.add_argument("--iter", type=int, default=2000, help="total training iterations")
self.parser.add_argument("--batch", type=int, default=8, help="batch sizes for each gpus")
self.parser.add_argument("--lr", type=float, default=0.0001, help="learning rate")
self.parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training")
self.parser.add_argument("--start_iter", type=int, default=0, help="start iteration")
self.parser.add_argument("--save_every", type=int, default=30000, help="interval of saving a checkpoint")
self.parser.add_argument("--save_begin", type=int, default=30000, help="when to start saving a checkpoint")
self.parser.add_argument("--log_every", type=int, default=200, help="interval of saving an intermediate image result")
self.parser.add_argument("--adv_loss", type=float, default=0.01, help="the weight of adv loss")
self.parser.add_argument("--grec_loss", type=float, default=0.1, help="the weight of mse recontruction loss")
self.parser.add_argument("--perc_loss", type=float, default=0.01, help="the weight of perceptual loss")
self.parser.add_argument("--tmp_loss", type=float, default=1.0, help="the weight of temporal consistency loss")
self.parser.add_argument("--encoder_path", type=str, default=None, help="path to the pretrained encoder model")
self.parser.add_argument("--direction_path", type=str, default='./checkpoint/directions.npy', help="path to the editing direction latents")
self.parser.add_argument("--stylegan_path", type=str, default='./checkpoint/stylegan2-ffhq-config-f.pt', help="path to the stylegan model")
self.parser.add_argument("--finetunegan_path", type=str, default='./checkpoint/cartoon/finetune-000600.pt', help="path to the finetuned stylegan model")
self.parser.add_argument("--weight", type=float, nargs=18, default=[1]*9+[0]*9, help="the weight for blending two models")
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
self.parser.add_argument("--name", type=str, default='vtoonify_t_cartoon', help="saved model name")
self.parser.add_argument("--pretrain", action="store_true", help="if true, only pretrain the encoder")
def parse(self):
self.opt = self.parser.parse_args()
if self.opt.encoder_path is None:
self.opt.encoder_path = os.path.join('./checkpoint/', self.opt.name, 'pretrain.pt')
args = vars(self.opt)
if self.opt.local_rank == 0:
print('Load options')
for name, value in sorted(args.items()):
print('%s: %s' % (str(name), str(value)))
return self.opt
# pretrain E of vtoonify.
# We train E so that its the last-layer feature matches the original 8-th-layer input feature of G1
# See Model initialization in Sec. 4.1.2 for the detail
def pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device):
pbar = range(args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
recon_loss = torch.tensor(0.0, device=device)
loss_dict = {}
if args.distributed:
g_module = generator.module
else:
g_module = generator
accum = 0.5 ** (32 / (10 * 1000))
requires_grad(g_module.encoder, True)
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
with torch.no_grad():
# during pretraining, no geometric transformations are applied.
noise_sample = torch.randn(args.batch, 512).cuda()
ws_ = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
ws_[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w''=w'=w+n
img_gen, _ = basemodel([ws_], input_is_latent=True, truncation=0.5, truncation_latent=0) # image part of x'
img_gen = torch.clamp(img_gen, -1, 1).detach()
img_gen512 = down(img_gen.detach())
img_gen256 = down(img_gen512.detach()) # image part of x'_down
mask512 = parsingpredictor(2*torch.clamp(img_gen512, -1, 1))[0]
real_input = torch.cat((img_gen256, down(mask512)/16.0), dim=1).detach() # x'_down
# f_G1^(8)(w'')
real_feat, real_skip = g_ema.generator([ws_], input_is_latent=True, return_feature_ind = 6, truncation=0.5, truncation_latent=0)
real_feat = real_feat.detach()
real_skip = real_skip.detach()
# f_E^(last)(x'_down)
fake_feat, fake_skip = generator(real_input, style=None, return_feat=True)
# L_E in Eq.(1)
recon_loss = F.mse_loss(fake_feat, real_feat) + F.mse_loss(fake_skip, real_skip)
loss_dict["emse"] = recon_loss
generator.zero_grad()
recon_loss.backward()
g_optim.step()
accumulate(g_ema.encoder, g_module.encoder, accum)
loss_reduced = reduce_loss_dict(loss_dict)
emse_loss_val = loss_reduced["emse"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"iter: {i:d}; emse: {emse_loss_val:.3f}"
)
)
if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
if (i+1) == args.iter:
savename = f"checkpoint/%s/pretrain.pt"%(args.name)
else:
savename = f"checkpoint/%s/pretrain-%05d.pt"%(args.name, i+1)
torch.save(
{
#"g": g_module.encoder.state_dict(),
"g_ema": g_ema.encoder.state_dict(),
},
savename,
)
# generate paired data and train vtoonify, see Sec. 4.1.2 for the detail
def train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device):
pbar = range(args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, smoothing=0.01, ncols=120, dynamic_ncols=False)
d_loss = torch.tensor(0.0, device=device)
g_loss = torch.tensor(0.0, device=device)
grec_loss = torch.tensor(0.0, device=device)
gfeat_loss = torch.tensor(0.0, device=device)
temporal_loss = torch.tensor(0.0, device=device)
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
###### This part is for data generation. Generate pair (x, y, w'') as in Fig. 5 of the paper
with torch.no_grad():
noise_sample = torch.randn(args.batch, 512).cuda()
wc = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
wc[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w'=w+n
wc = wc.detach()
xc, _ = basemodel([wc], input_is_latent=True, truncation=0.5, truncation_latent=0)
xc = torch.clamp(xc, -1, 1).detach() # x'
xl = pspencoder(F.adaptive_avg_pool2d(xc, 256))
xl = basemodel.style(xl.reshape(xl.shape[0]*xl.shape[1], xl.shape[2])).reshape(xl.shape) # E_s(x'_down)
xl = torch.cat((wc[:,0:7]*0.5, xl[:,7:18]), dim=1).detach() # w'' = concatenate w' and E_s(x'_down)
xs, _ = g_ema.generator([xl], input_is_latent=True)
xs = torch.clamp(xs, -1, 1).detach() # y'
# during training, random geometric transformations are applied.
imgs, _ = random_apply_affine(torch.cat((xc.detach(),xs), dim=1), 0.2, None)
real_input1024 = imgs[:,0:3].detach() # image part of x
real_input512 = down(real_input1024).detach()
real_input256 = down(real_input512).detach()
mask512 = parsingpredictor(2*real_input512)[0]
mask256 = down(mask512).detach()
mask = F.adaptive_avg_pool2d(mask512, 1024).detach() # parsing part of x
real_output = imgs[:,3:].detach() # y
real_input = torch.cat((real_input256, mask256/16.0), dim=1) # x_down
# for log, sample a fixed input-output pair (x_down, y, w'')
if idx == 0 or i == 0:
samplein = real_input.clone().detach()
sampleout = real_output.clone().detach()
samplexl = xl.clone().detach()
###### This part is for training discriminator
requires_grad(g_module.encoder, False)
requires_grad(g_module.fusion_out, False)
requires_grad(g_module.fusion_skip, False)
requires_grad(discriminator, True)
fake_output = generator(real_input, xl)
fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
real_pred = discriminator(F.adaptive_avg_pool2d(real_output, 256))
# L_adv in Eq.(3)
d_loss = d_logistic_loss(real_pred, fake_pred) * args.adv_loss
loss_dict["d"] = d_loss
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
###### This part is for training generator (encoder and fusion modules)
requires_grad(g_module.encoder, True)
requires_grad(g_module.fusion_out, True)
requires_grad(g_module.fusion_skip, True)
requires_grad(discriminator, False)
fake_output = generator(real_input, xl)
fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
# L_adv in Eq.(3)
g_loss = g_nonsaturating_loss(fake_pred) * args.adv_loss
# L_rec in Eq.(2)
grec_loss = F.mse_loss(fake_output, real_output) * args.grec_loss
gfeat_loss = percept(F.adaptive_avg_pool2d(fake_output, 512), # 1024 will out of memory
F.adaptive_avg_pool2d(real_output, 512)).sum() * args.perc_loss # 256 will get blurry output
loss_dict["g"] = g_loss
loss_dict["gr"] = grec_loss
loss_dict["gf"] = gfeat_loss
w = random.randint(0,1024-896)
h = random.randint(0,1024-896)
crop_input = torch.cat((real_input1024[:,:,w:w+896,h:h+896], mask[:,:,w:w+896,h:h+896]/16.0), dim=1).detach()
crop_input = down(down(crop_input))
crop_fake_output = fake_output[:,:,w:w+896,h:h+896]
fake_crop_output = generator(crop_input, xl)
# L_tmp in Eq.(4), gradually increase the weight of L_tmp
temporal_loss = ((fake_crop_output-crop_fake_output)**2).mean() * max(idx/(args.iter/2.0)-1, 0) * args.tmp_loss
loss_dict["tp"] = temporal_loss
generator.zero_grad()
(g_loss + grec_loss + gfeat_loss + temporal_loss).backward()
g_optim.step()
accumulate(g_ema.encoder, g_module.encoder, accum)
accumulate(g_ema.fusion_out, g_module.fusion_out, accum)
accumulate(g_ema.fusion_skip, g_module.fusion_skip, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
gr_loss_val = loss_reduced["gr"].mean().item()
gf_loss_val = loss_reduced["gf"].mean().item()
tmp_loss_val = loss_reduced["tp"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"iter: {i:d}; advd: {d_loss_val:.3f}; advg: {g_loss_val:.3f}; mse: {gr_loss_val:.3f}; "
f"perc: {gf_loss_val:.3f}; tmp: {tmp_loss_val:.3f}"
)
)
if i % args.log_every == 0 or (i+1) == args.iter:
with torch.no_grad():
g_ema.eval()
sample = g_ema(samplein, samplexl)
sample = F.interpolate(torch.cat((sampleout, sample), dim=0), 256)
utils.save_image(
sample,
f"log/%s/%05d.jpg"%(args.name, i),
nrow=int(args.batch),
normalize=True,
range=(-1, 1),
)
if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
if (i+1) == args.iter:
savename = f"checkpoint/%s/vtoonify.pt"%(args.name)
else:
savename = f"checkpoint/%s/vtoonify_%05d.pt"%(args.name, i+1)
torch.save(
{
#"g": g_module.state_dict(),
#"d": d_module.state_dict(),
"g_ema": g_ema.state_dict(),
},
savename,
)
if __name__ == "__main__":
device = "cuda"
parser = TrainOptions()
args = parser.parse()
if args.local_rank == 0:
print('*'*98)
if not os.path.exists("log/%s/"%(args.name)):
os.makedirs("log/%s/"%(args.name))
if not os.path.exists("checkpoint/%s/"%(args.name)):
os.makedirs("checkpoint/%s/"%(args.name))
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
generator = VToonify(backbone = 'toonify').to(device)
generator.apply(weights_init)
g_ema = VToonify(backbone = 'toonify').to(device)
g_ema.eval()
basemodel = Generator(1024, 512, 8, 2).to(device) # G0
finetunemodel = Generator(1024, 512, 8, 2).to(device)
basemodel.load_state_dict(torch.load(args.stylegan_path, map_location=lambda storage, loc: storage)['g_ema'])
finetunemodel.load_state_dict(torch.load(args.finetunegan_path, map_location=lambda storage, loc: storage)['g_ema'])
fused_state_dict = blend_models(finetunemodel, basemodel, args.weight) # G1
generator.generator.load_state_dict(fused_state_dict) # load G1
g_ema.generator.load_state_dict(fused_state_dict)
requires_grad(basemodel, False)
requires_grad(generator.generator, False)
requires_grad(g_ema.generator, False)
if not args.pretrain:
generator.encoder.load_state_dict(torch.load(args.encoder_path, map_location=lambda storage, loc: storage)["g_ema"])
# we initialize the fusion modules to map f_G \otimes f_E to f_G.
for k in generator.fusion_out:
k.weight.data *= 0.01
k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()
for k in generator.fusion_skip:
k.weight.data *= 0.01
k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()
accumulate(g_ema.encoder, generator.encoder, 0)
accumulate(g_ema.fusion_out, generator.fusion_out, 0)
accumulate(g_ema.fusion_skip, generator.fusion_skip, 0)
g_parameters = list(generator.encoder.parameters())
if not args.pretrain:
g_parameters = g_parameters + list(generator.fusion_out.parameters()) + list(generator.fusion_skip.parameters())
g_optim = optim.Adam(
g_parameters,
lr=args.lr,
betas=(0.9, 0.99),
)
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True,
)
parsingpredictor = BiSeNet(n_classes=19)
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
parsingpredictor.to(device).eval()
requires_grad(parsingpredictor, False)
# we apply gaussian blur to the images to avoid flickers caused during downsampling
down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device)
requires_grad(down, False)
directions = torch.tensor(np.load(args.direction_path)).to(device)
if not args.pretrain:
discriminator = ConditionalDiscriminator(256).to(device)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr,
betas=(0.9, 0.99),
)
if args.distributed:
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True,
)
percept = lpips.PerceptualLoss(model="net-lin", net="vgg", use_gpu=device.startswith("cuda"), gpu_ids=[args.local_rank])
requires_grad(percept.model.net, False)
pspencoder = load_psp_standalone(args.style_encoder_path, device)
if args.local_rank == 0:
print('Load models and data successfully loaded!')
if args.pretrain:
pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device)
else:
train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device)
|