Spaces:
Running
on
T4
Running
on
T4
File size: 14,663 Bytes
8a32844 cc17fb8 8a32844 af0602e 8a32844 af0602e 8a32844 71365ca 8a32844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
def to_cuda(data: dict):
for k, v in data.items():
if isinstance(v, torch.Tensor):
data[k] = v.cuda(non_blocking=True)
if isinstance(v, list) and len(v)>=1 and isinstance(v[0], torch.Tensor):
for i, l_i in enumerate(v):
data[k][i] = l_i.cuda(non_blocking=True)
return data
def align_scale(pred: torch.tensor, target: torch.tensor):
mask = target > 0
if torch.sum(mask) > 10:
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
else:
scale = 1
pred_scaled = pred * scale
return pred_scaled, scale
def align_scale_shift(pred: torch.tensor, target: torch.tensor):
mask = target > 0
target_mask = target[mask].cpu().numpy()
pred_mask = pred[mask].cpu().numpy()
if torch.sum(mask) > 10:
scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
if scale < 0:
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
shift = 0
else:
scale = 1
shift = 0
pred = pred * scale + shift
return pred, scale
def align_scale_shift_numpy(pred: np.array, target: np.array):
mask = target > 0
target_mask = target[mask]
pred_mask = pred[mask]
if np.sum(mask) > 10:
scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
if scale < 0:
scale = np.median(target[mask]) / (np.median(pred[mask]) + 1e-8)
shift = 0
else:
scale = 1
shift = 0
pred = pred * scale + shift
return pred, scale
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
"""
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map.
"""
fx, fy, u0, v0 = intrinsics
f = (fx + fy) / 2.0
# principle point location
x_row = np.arange(0, W).astype(np.float32)
x_row_center_norm = (x_row - u0) / W
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]
y_col = np.arange(0, H).astype(np.float32)
y_col_center_norm = (y_col - v0) / H
y_center = np.tile(y_col_center_norm, (W, 1)).T # [H, W]
# FoV
fov_x = np.arctan(x_center / (f / W))
fov_y = np.arctan(y_center / (f / H))
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
return cam_model
def resize_for_input(image, output_shape, intrinsic, canonical_shape, to_canonical_ratio):
"""
Resize the input.
Resizing consists of two processed, i.e. 1) to the canonical space (adjust the camera model); 2) resize the image while the camera model holds. Thus the
label will be scaled with the resize factor.
"""
padding = [123.675, 116.28, 103.53]
h, w, _ = image.shape
resize_ratio_h = output_shape[0] / canonical_shape[0]
resize_ratio_w = output_shape[1] / canonical_shape[1]
to_scale_ratio = min(resize_ratio_h, resize_ratio_w)
resize_ratio = to_canonical_ratio * to_scale_ratio
reshape_h = int(resize_ratio * h)
reshape_w = int(resize_ratio * w)
pad_h = max(output_shape[0] - reshape_h, 0)
pad_w = max(output_shape[1] - reshape_w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
# resize
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
# padding
image = cv2.copyMakeBorder(
image,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=padding)
# Resize, adjust principle point
intrinsic[2] = intrinsic[2] * to_scale_ratio
intrinsic[3] = intrinsic[3] * to_scale_ratio
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
cam_model = cv2.copyMakeBorder(
cam_model,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=-1)
pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
label_scale_factor=1/to_scale_ratio
return image, cam_model, pad, label_scale_factor
def get_prediction(
model: torch.nn.Module,
input: torch.tensor,
cam_model: torch.tensor,
pad_info: torch.tensor,
scale_info: torch.tensor,
gt_depth: torch.tensor,
normalize_scale: float,
ori_shape: list=[],
):
data = dict(
input=input,
cam_model=cam_model,
)
#pred_depth, confidence, output_dict = model.module.inference(data)
pred_depth, confidence, output_dict = model.inference(data)
pred_depth = pred_depth
pred_depth = pred_depth.squeeze()
pred_depth = pred_depth[pad_info[0] : pred_depth.shape[0] - pad_info[1], pad_info[2] : pred_depth.shape[1] - pad_info[3]]
if gt_depth is not None:
resize_shape = gt_depth.shape
elif ori_shape != []:
resize_shape = ori_shape
else:
resize_shape = pred_depth.shape
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], resize_shape, mode='bilinear').squeeze() # to original size
pred_depth = pred_depth * normalize_scale / scale_info
if gt_depth is not None:
pred_depth_scale, scale = align_scale(pred_depth, gt_depth)
else:
pred_depth_scale = None
scale = None
return pred_depth, pred_depth_scale, scale, output_dict
def transform_test_data_scalecano(rgb, intrinsic, data_basic):
"""
Pre-process the input for forwarding. Employ `label scale canonical transformation.'
Args:
rgb: input rgb image. [H, W, 3]
intrinsic: camera intrinsic parameter, [fx, fy, u0, v0]
data_basic: predefined canonical space in configs.
"""
canonical_space = data_basic['canonical_space']
forward_size = data_basic.crop_size
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None]
# BGR to RGB
rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
ori_h, ori_w, _ = rgb.shape
ori_focal = (intrinsic[0] + intrinsic[1]) / 2
canonical_focal = canonical_space['focal_length']
cano_label_scale_ratio = canonical_focal / ori_focal
canonical_intrinsic = [
intrinsic[0] * cano_label_scale_ratio,
intrinsic[1] * cano_label_scale_ratio,
intrinsic[2],
intrinsic[3],
]
# resize
rgb, cam_model, pad, resize_label_scale_ratio = resize_for_input(rgb, forward_size, canonical_intrinsic, [ori_h, ori_w], 1.0)
# label scale factor
label_scale_factor = cano_label_scale_ratio * resize_label_scale_ratio
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float()
rgb = torch.div((rgb - mean), std)
rgb = rgb[None, :, :, :].cuda()
#rgb = rgb[None, :, :, :]
cam_model = torch.from_numpy(cam_model.transpose((2, 0, 1))).float()
cam_model = cam_model[None, :, :, :].cuda()
#cam_model = cam_model[None, :, :, :]
cam_model_stacks = [
torch.nn.functional.interpolate(cam_model, size=(cam_model.shape[2]//i, cam_model.shape[3]//i), mode='bilinear', align_corners=False)
for i in [2, 4, 8, 16, 32]
]
return rgb, cam_model_stacks, pad, label_scale_factor
def do_scalecano_test_with_custom_data(
model: torch.nn.Module,
cfg: dict,
test_data: list,
logger: logging.RootLogger,
is_distributed: bool = True,
local_rank: int = 0,
):
show_dir = cfg.show_dir
save_interval = 1
save_imgs_dir = show_dir + '/vis'
os.makedirs(save_imgs_dir, exist_ok=True)
save_pcd_dir = show_dir + '/pcd'
os.makedirs(save_pcd_dir, exist_ok=True)
normalize_scale = cfg.data_basic.depth_range[1]
dam = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
dam_median = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
dam_global = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
for i, an in tqdm(enumerate(test_data)):
#for i, an in enumerate(test_data):
print(an['rgb'])
rgb_origin = cv2.imread(an['rgb'])[:, :, ::-1].copy()
if an['depth'] is not None:
gt_depth = cv2.imread(an['depth'], -1)
gt_depth_scale = an['depth_scale']
gt_depth = gt_depth / gt_depth_scale
gt_depth_flag = True
else:
gt_depth = None
gt_depth_flag = False
intrinsic = an['intrinsic']
if intrinsic is None:
intrinsic = [1000.0, 1000.0, rgb_origin.shape[1]/2, rgb_origin.shape[0]/2]
# intrinsic = [542.0, 542.0, 963.706, 760.199]
print(intrinsic)
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(rgb_origin, intrinsic, cfg.data_basic)
pred_depth, pred_depth_scale, scale, output = get_prediction(
model = model,
input = rgb_input,
cam_model = cam_models_stacks,
pad_info = pad,
scale_info = label_scale_factor,
gt_depth = None,
normalize_scale = normalize_scale,
ori_shape=[rgb_origin.shape[0], rgb_origin.shape[1]],
)
pred_depth = (pred_depth > 0) * (pred_depth < 300) * pred_depth
if gt_depth_flag:
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], (gt_depth.shape[0], gt_depth.shape[1]), mode='bilinear').squeeze() # to original size
#gt_depth = torch.from_numpy(gt_depth).cuda()
gt_depth = torch.from_numpy(gt_depth)
pred_depth_median = pred_depth * gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median()
pred_global, _ = align_scale_shift(pred_depth, gt_depth)
mask = (gt_depth > 1e-8)
dam.update_metrics_gpu(pred_depth, gt_depth, mask, is_distributed)
dam_median.update_metrics_gpu(pred_depth_median, gt_depth, mask, is_distributed)
dam_global.update_metrics_gpu(pred_global, gt_depth, mask, is_distributed)
print(gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median(), )
if i % save_interval == 0:
os.makedirs(osp.join(save_imgs_dir, an['folder']), exist_ok=True)
rgb_torch = torch.from_numpy(rgb_origin).to(pred_depth.device).permute(2, 0, 1)
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None].to(rgb_torch.device)
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None].to(rgb_torch.device)
rgb_torch = torch.div((rgb_torch - mean), std)
save_val_imgs(
i,
pred_depth,
gt_depth if gt_depth is not None else torch.ones_like(pred_depth, device=pred_depth.device),
rgb_torch,
osp.join(an['folder'], an['filename']),
save_imgs_dir,
)
#save_raw_imgs(pred_depth.detach().cpu().numpy(), rgb_torch, osp.join(an['folder'], an['filename']), save_imgs_dir, 1000.0)
# pcd
pred_depth = pred_depth.detach().cpu().numpy()
#pcd = reconstruct_pcd(pred_depth, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3])
#os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
#save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4]+'.ply'))
if an['intrinsic'] == None:
#for r in [0.9, 1.0, 1.1]:
for r in [1.0]:
#for f in [600, 800, 1000, 1250, 1500]:
for f in [1000]:
pcd = reconstruct_pcd(pred_depth, f * r, f * (2-r), intrinsic[2], intrinsic[3])
fstr = '_fx_' + str(int(f * r)) + '_fy_' + str(int(f * (2-r)))
os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4] + fstr +'.ply'))
if "normal_out_list" in output.keys():
normal_out_list = output['normal_out_list']
pred_normal = normal_out_list[0][:, :3, :, :] # (B, 3, H, W)
H, W = pred_normal.shape[2:]
pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]
gt_normal = None
#if gt_normal_flag:
if False:
pred_normal = torch.nn.functional.interpolate(pred_normal, size=gt_normal.shape[2:], mode='bilinear', align_corners=True)
gt_normal = cv2.imread(norm_path)
gt_normal = cv2.cvtColor(gt_normal, cv2.COLOR_BGR2RGB)
gt_normal = np.array(gt_normal).astype(np.uint8)
gt_normal = ((gt_normal.astype(np.float32) / 255.0) * 2.0) - 1.0
norm_valid_mask = (np.linalg.norm(gt_normal, axis=2, keepdims=True) > 0.5)
gt_normal = gt_normal * norm_valid_mask
gt_normal_mask = ~torch.all(gt_normal == 0, dim=1, keepdim=True)
dam.update_normal_metrics_gpu(pred_normal, gt_normal, gt_normal_mask, cfg.distributed)# save valiad normal
if i % save_interval == 0:
save_normal_val_imgs(iter,
pred_normal,
gt_normal if gt_normal is not None else torch.ones_like(pred_normal, device=pred_normal.device),
rgb_torch, # data['input'],
osp.join(an['folder'], 'normal_'+an['filename']),
save_imgs_dir,
)
#if gt_depth_flag:
if False:
eval_error = dam.get_metrics()
print('w/o match :', eval_error)
eval_error_median = dam_median.get_metrics()
print('median match :', eval_error_median)
eval_error_global = dam_global.get_metrics()
print('global match :', eval_error_global)
else:
print('missing gt_depth, only save visualizations...')
|