Spaces:
Sleeping
Sleeping
File size: 7,069 Bytes
17c6318 30ffb9e 17c6318 30ffb9e 17c6318 30ffb9e 17c6318 30ffb9e 17c6318 30ffb9e 17c6318 30ffb9e 17c6318 30ffb9e fc26027 30ffb9e 17c6318 30ffb9e fc26027 30ffb9e 17c6318 30ffb9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from modal import App, Volume, Image, Mount
from typing import List, Dict, Tuple, Union, Callable
# from preprocessing import FileIO
# assets = modal.Mount.from_local_dir(
# "./data",
# # condition=lambda pth: not ".venv" in pth,
# remote_path="./data",
# )
app = App("vector-search-project")
vector_search = Image.debian_slim().pip_install(
"sentence_transformers==2.2.2", "llama_index==0.9.6.post1", "angle_emb==0.1.5"
)
vol = Volume.from_name("vector-search-volume")
# ^ volume must be created manually with CLI: modal volume create vector-search-volume
@app.function(image=vector_search,
gpu="A100",
timeout=600,
volumes={"/root/models": vol}
# secrets are available in the environment with os.environ["SECRET_NAME"]
# secret=modal.Secret.from_name("my-huggingface-secret")
)
def encode_content_splits(content_splits,
model=None, # path or name of model
**kwargs
):
""" kwargs provided in case encode method has extra arguments """
from sentence_transformers import SentenceTransformer
import os, time
models_list = os.listdir('/root/models')
print("Models:", models_list)
if isinstance(model, str) and model[-1] == "/":
model = model[:-1]
if isinstance(model, str):
model = model.split('/')[-1]
if isinstance(model, str) and model in models_list:
if "UAE-Large-V1-300" in model:
print("Loading finetuned UAE-Large-V1-300 model from Modal Volume")
from angle_emb import AnglE
model = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1',
pretrained_model_path=os.path.join('/root/models', model),
pooling_strategy='cls').cuda()
kwargs['to_numpy'] = True
# this model doesn't accept list of lists
if isinstance(content_splits[0], list):
content_splits = [chunk for episode in content_splits for chunk in episode]
else:
print(f"Loading model {model} from Modal volume")
model = SentenceTransformer(os.path.join('/root/models', model))
elif isinstance(model, str):
if model in models_list:
print(f"Loading model {model} from Modal volume")
model = SentenceTransformer(os.path.join('/root/models', model))
else:
print(f"Model {model} not found in Modal volume, loading from HuggingFace")
model = SentenceTransformer(model)
else:
print(f"Using model provided as argument")
if 'save' in kwargs:
if isinstance(kwargs['save'], str) and kwargs['save'][-1] == '/':
kwargs['save'] = kwargs['save'][:-1]
kwargs['save'] = kwargs['save'].split('/')[-1]
fname = os.path.join('/root/models', kwargs['save'])
print(f"Saving model in {fname}")
# model.save(fname)
print(f"Model saved in {fname}")
kwargs.pop('save')
print("Starting encoding")
start = time.perf_counter()
emb = [list(zip(episode, model.encode(episode, **kwargs))) for episode in content_splits]
end = time.perf_counter() - start
print(f"GPU processing lasted {end:.2f} seconds")
print("Encoding finished")
return emb
@app.function(image=vector_search, gpu="A100", timeout=240,
mounts=[Mount.from_local_dir("./data",
remote_path="/root/data",
condition=lambda pth: ".json" in pth)],
volumes={"/root/models": vol}
)
def finetune(training_path='./data/training_data_300.json',
valid_path='./data/validation_data_100.json',
model_id=None,
ignore_existing=False):
import os
print("Data:", os.listdir('/root/data'))
print("Models:", os.listdir('/root/models'))
if model_id is None:
print("No model ID provided")
return None
elif isinstance(model_id, str) and model_id[-1] == "/":
model_id = model_id[:-1]
from llama_index.finetuning import EmbeddingQAFinetuneDataset
training_set = EmbeddingQAFinetuneDataset.from_json(training_path)
valid_set = EmbeddingQAFinetuneDataset.from_json(valid_path)
print("Datasets loaded")
num_training_examples = len(training_set.queries)
print(f"Training examples: {num_training_examples}")
from llama_index.finetuning import SentenceTransformersFinetuneEngine
print(f"Model Name is {model_id}")
model_ext = model_id.split('/')[1]
ft_model_name = f'finetuned-{model_ext}-{num_training_examples}'
model_outpath = os.path.join("/root/models", ft_model_name)
print(f'Model ID: {model_id}')
print(f'Model Outpath: {model_outpath}')
finetune_engine = SentenceTransformersFinetuneEngine(
training_set,
batch_size=32,
model_id=model_id,
model_output_path=model_outpath,
val_dataset=valid_set,
epochs=10
)
import io, os, zipfile, glob, time
try:
start = time.perf_counter()
finetune_engine.finetune()
end = time.perf_counter() - start
print(f"GPU processing lasted {end:.2f} seconds")
print(os.listdir('/root/models'))
app.volume.commit() # Persist changes, ie the finetumed model
# TODO SHARE THE MODEL ON HUGGINGFACE
# https://huggingface.co/docs/transformers/v4.15.0/model_sharing
folder_to_zip = model_outpath
# Zip the contents of the folder at 'folder_path' and return a BytesIO object.
bytes_buffer = io.BytesIO()
with zipfile.ZipFile(bytes_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for file_path in glob.glob(folder_to_zip + "/**", recursive=True):
print(f"Processed file {file_path}")
zip_file.write(file_path, os.path.relpath(file_path, start=folder_to_zip))
# Move the pointer to the start of the BytesIO buffer before returning
bytes_buffer.seek(0)
# You can now return this zipped_folder object, write it to a file, send it over a network, etc.
# Replace with the path to the folder you want to zip
zippedio = bytes_buffer
return zippedio
except Exception:
return "Finetuning failed"
@app.local_entrypoint()
def test_method(content_splits=[["a"]]):
output = encode_content_splits.remote(content_splits)
return output
# deploy it with
# modal token set --token-id ak-xxxxxx --token-secret as-xxxxx # given when we create a new token
# modal deploy podcast/1/backend.py
# View Deployment: https://modal.com/apps/jpbianchi/falcon_hackaton-project <<< use this project name |