Spaces:
Running
Running
File size: 5,594 Bytes
083cd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from tiktoken import get_encoding
from weaviate_interface import WeaviateClient
from prompt_templates import question_answering_prompt_series, question_answering_system
from openai_interface import GPT_Turbo
from app_features import (convert_seconds, generate_prompt_series, search_result,
validate_token_threshold, load_content_cache, load_data)
from reranker import ReRanker
from loguru import logger
import streamlit as st
import sys
import json
import os
# load environment variables
from dotenv import load_dotenv
load_dotenv('.env', override=True)
## PAGE CONFIGURATION
st.set_page_config(page_title="Impact Theory",
page_icon=None,
layout="wide",
initial_sidebar_state="auto",
menu_items=None)
##############
# START CODE #
##############
data_path = 'data/impact_theory_data.json'
cache_path = 'data/impact_theory_cache.parquet'
data = load_data(data_path)
cache = load_content_cache(cache_path)
## RETRIEVER
client.display_properties.append('summary')
## RERANKER
## LLM
## ENCODING
## INDEX NAME
##############
# END CODE #
##############
data = load_data(data_path)
#creates list of guests for sidebar
guest_list = sorted(list(set([d['guest'] for d in data])))
def main():
with st.sidebar:
guest = st.selectbox('Select Guest', options=guest_list, index=None, placeholder='Select Guest')
st.image('./assets/impact-theory-logo.png', width=400)
st.subheader(f"Chat with the Impact Theory podcast: ")
st.write('\n')
col1, _ = st.columns([7,3])
with col1:
query = st.text_input('Enter your question: ')
st.write('\n\n\n\n\n')
if query:
##############
# START CODE #
##############
st.write('Hmmm...this app does not seem to be working yet. Please check back later.')
if guest:
st.write(f'However, it looks like you selected {guest} as a filter.')
# make hybrid call to weaviate
hybrid_response = None
# rerank results
ranked_response = None
# validate token count is below threshold
# valid_response = validate_token_threshold(ranked_response,
# question_answering_prompt_series,
# query=query,
# tokenizer= # variable from ENCODING,
# token_threshold=4000,
# verbose=True)
##############
# END CODE #
##############
# # generate LLM prompt
# prompt = generate_prompt_series(query=query, results=valid_response)
# # prep for streaming response
# st.subheader("Response from Impact Theory (context)")
# with st.spinner('Generating Response...'):
# st.markdown("----")
# #creates container for LLM response
# chat_container, response_box = [], st.empty()
#
# # execute chat call to LLM
# ##############
# # START CODE #
# ##############
#
# ##############
# # END CODE #
# ##############
# try:
#inserts chat stream from LLM
# with response_box:
# content = resp.choices[0].delta.content
# if content:
# chat_container.append(content)
# result = "".join(chat_container).strip()
# st.write(f'{result}')
# except Exception as e:
# print(e)
# continue
# ##############
# # START CODE #
# ##############
# st.subheader("Search Results")
# for i, hit in enumerate(valid_response):
# col1, col2 = st.columns([7, 3], gap='large')
# image = # get thumbnail_url
# episode_url = # get episode_url
# title = # get title
# show_length = # get length
# time_string = # convert show_length to readable time string
# ##############
# # END CODE #
# ##############
# with col1:
# st.write( search_result( i=i,
# url=episode_url,
# guest=hit['guest'],
# title=title,
# content=hit['content'],
# length=time_string),
# unsafe_allow_html=True)
# st.write('\n\n')
# with col2:
# # st.write(f"<a href={episode_url} <img src={image} width='200'></a>",
# # unsafe_allow_html=True)
# st.image(image, caption=title.split('|')[0], width=200, use_column_width=False)
if __name__ == '__main__':
main() |