Spaces:
Sleeping
Sleeping
File size: 17,590 Bytes
30ffb9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
from weaviate import Client, AuthApiKey
from dataclasses import dataclass
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from typing import List, Union, Callable
from torch import cuda
from tqdm import tqdm
import time
class WeaviateClient(Client):
'''
A python native Weaviate Client class that encapsulates Weaviate functionalities
in one object. Several convenience methods are added for ease of use.
Args
----
api_key: str
The API key for the Weaviate Cloud Service (WCS) instance.
https://console.weaviate.cloud/dashboard
endpoint: str
The url endpoint for the Weaviate Cloud Service instance.
model_name_or_path: str='sentence-transformers/all-MiniLM-L6-v2'
The name or path of the SentenceTransformer model to use for vector search.
Will also support OpenAI text-embedding-ada-002 model. This param enables
the use of most leading models on MTEB Leaderboard:
https://huggingface.co/spaces/mteb/leaderboard
openai_api_key: str=None
The API key for the OpenAI API. Only required if using OpenAI text-embedding-ada-002 model.
'''
def __init__(self,
api_key: str,
endpoint: str,
model_name_or_path: str='sentence-transformers/all-MiniLM-L6-v2',
openai_api_key: str=None,
**kwargs
):
auth_config = AuthApiKey(api_key=api_key)
super().__init__(auth_client_secret=auth_config,
url=endpoint,
**kwargs)
self.model_name_or_path = model_name_or_path
self.openai_model = False
if self.model_name_or_path == 'text-embedding-ada-002':
if not openai_api_key:
raise ValueError(f'OpenAI API key must be provided to use this model: {self.model_name_or_path}')
self.model = OpenAI(api_key=openai_api_key)
self.openai_model = True
else:
self.model = SentenceTransformer(self.model_name_or_path) if self.model_name_or_path else None
self.display_properties = ['title', 'video_id', 'length', 'thumbnail_url', 'views', 'episode_url', \
'doc_id', 'guest', 'content'] # 'playlist_id', 'channel_id', 'author'
def show_classes(self) -> Union[List[dict], str]:
'''
Shows all available classes (indexes) on the Weaviate instance.
'''
classes = self.cluster.get_nodes_status()[0]['shards']
if classes:
return [d['class'] for d in classes]
else:
return "No classes found on cluster."
def show_class_info(self) -> Union[List[dict], str]:
'''
Shows all information related to the classes (indexes) on the Weaviate instance.
'''
classes = self.cluster.get_nodes_status()[0]['shards']
if classes:
return [d for d in classes]
else:
return "No classes found on cluster."
def show_class_properties(self, class_name: str) -> Union[dict, str]:
'''
Shows all properties of a class (index) on the Weaviate instance.
'''
classes = self.schema.get()
if classes:
all_classes = classes['classes']
for d in all_classes:
if d['class'] == class_name:
return d['properties']
return f'Class "{class_name}" not found on host'
return f'No Classes found on host'
def show_class_config(self, class_name: str) -> Union[dict, str]:
'''
Shows all configuration of a class (index) on the Weaviate instance.
'''
classes = self.schema.get()
if classes:
all_classes = classes['classes']
for d in all_classes:
if d['class'] == class_name:
return d
return f'Class "{class_name}" not found on host'
return f'No Classes found on host'
def delete_class(self, class_name: str) -> str:
'''
Deletes a class (index) on the Weaviate instance, if it exists.
'''
available = self._check_class_avialability(class_name)
if isinstance(available, bool):
if available:
self.schema.delete_class(class_name)
not_deleted = self._check_class_avialability(class_name)
if isinstance(not_deleted, bool):
if not_deleted:
return f'Class "{class_name}" was not deleted. Try again.'
else:
return f'Class "{class_name}" deleted'
return f'Class "{class_name}" deleted and there are no longer any classes on host'
return f'Class "{class_name}" not found on host'
return available
def _check_class_avialability(self, class_name: str) -> Union[bool, str]:
'''
Checks if a class (index) exists on the Weaviate instance.
'''
classes = self.schema.get()
if classes:
all_classes = classes['classes']
for d in all_classes:
if d['class'] == class_name:
return True
return False
else:
return f'No Classes found on host'
def format_response(self,
response: dict,
class_name: str
) -> List[dict]:
'''
Formats json response from Weaviate into a list of dictionaries.
Expands _additional fields if present into top-level dictionary.
'''
if response.get('errors'):
return response['errors'][0]['message']
results = []
hits = response['data']['Get'][class_name]
for d in hits:
temp = {k:v for k,v in d.items() if k != '_additional'}
if d.get('_additional'):
for key in d['_additional']:
temp[key] = d['_additional'][key]
results.append(temp)
return results
def update_ef_value(self, class_name: str, ef_value: int) -> str:
'''
Updates ef_value for a class (index) on the Weaviate instance.
'''
self.schema.update_config(class_name=class_name, config={'vectorIndexConfig': {'ef': ef_value}})
print(f'ef_value updated to {ef_value} for class {class_name}')
return self.show_class_config(class_name)['vectorIndexConfig']
def keyword_search(self,
request: str,
class_name: str,
properties: List[str]=['content'],
limit: int=10,
where_filter: dict=None,
display_properties: List[str]=None,
return_raw: bool=False) -> Union[dict, List[dict]]:
'''
Executes Keyword (BM25) search.
Args
----
query: str
User query.
class_name: str
Class (index) to search.
properties: List[str]
List of properties to search across.
limit: int=10
Number of results to return.
display_properties: List[str]=None
List of properties to return in response.
If None, returns all properties.
return_raw: bool=False
If True, returns raw response from Weaviate.
'''
display_properties = display_properties if display_properties else self.display_properties
response = (self.query
.get(class_name, display_properties)
.with_bm25(query=request, properties=properties)
.with_additional(['score', "id"])
.with_limit(limit)
)
response = response.with_where(where_filter).do() if where_filter else response.do()
if return_raw:
return response
else:
return self.format_response(response, class_name)
def vector_search(self,
request: str,
class_name: str,
limit: int=10,
where_filter: dict=None,
display_properties: List[str]=None,
return_raw: bool=False,
device: str='cuda:0' if cuda.is_available() else 'cpu'
) -> Union[dict, List[dict]]:
'''
Executes vector search using embedding model defined on instantiation
of WeaviateClient instance.
Args
----
query: str
User query.
class_name: str
Class (index) to search.
limit: int=10
Number of results to return.
display_properties: List[str]=None
List of properties to return in response.
If None, returns all properties.
return_raw: bool=False
If True, returns raw response from Weaviate.
'''
display_properties = display_properties if display_properties else self.display_properties
query_vector = self._create_query_vector(request, device=device)
response = (
self.query
.get(class_name, display_properties)
.with_near_vector({"vector": query_vector})
.with_limit(limit)
.with_additional(['distance'])
)
response = response.with_where(where_filter).do() if where_filter else response.do()
if return_raw:
return response
else:
return self.format_response(response, class_name)
def _create_query_vector(self, query: str, device: str) -> List[float]:
'''
Creates embedding vector from text query.
'''
return self.get_openai_embedding(query) if self.openai_model else self.model.encode(query, device=device).tolist()
def get_openai_embedding(self, query: str) -> List[float]:
'''
Gets embedding from OpenAI API for query.
'''
embedding = self.model.embeddings.create(input=query, model='text-embedding-ada-002').model_dump()
if embedding:
return embedding['data'][0]['embedding']
else:
raise ValueError(f'No embedding found for query: {query}')
def hybrid_search(self,
request: str,
class_name: str,
properties: List[str]=['content'],
alpha: float=0.5,
limit: int=10,
where_filter: dict=None,
display_properties: List[str]=None,
return_raw: bool=False,
device: str='cuda:0' if cuda.is_available() else 'cpu'
) -> Union[dict, List[dict]]:
'''
Executes Hybrid (BM25 + Vector) search.
Args
----
query: str
User query.
class_name: str
Class (index) to search.
properties: List[str]
List of properties to search across (using BM25)
alpha: float=0.5
Weighting factor for BM25 and Vector search.
alpha can be any number from 0 to 1, defaulting to 0.5:
alpha = 0 executes a pure keyword search method (BM25)
alpha = 0.5 weighs the BM25 and vector methods evenly
alpha = 1 executes a pure vector search method
limit: int=10
Number of results to return.
display_properties: List[str]=None
List of properties to return in response.
If None, returns all properties.
return_raw: bool=False
If True, returns raw response from Weaviate.
'''
display_properties = display_properties if display_properties else self.display_properties
query_vector = self._create_query_vector(request, device=device)
response = (
self.query
.get(class_name, display_properties)
.with_hybrid(query=request,
alpha=alpha,
vector=query_vector,
properties=properties,
fusion_type='relativeScoreFusion') #hard coded option for now
.with_additional(["score", "explainScore"])
.with_limit(limit)
)
response = response.with_where(where_filter).do() if where_filter else response.do()
if return_raw:
return response
else:
return self.format_response(response, class_name)
class WeaviateIndexer:
def __init__(self,
client: WeaviateClient,
batch_size: int=150,
num_workers: int=4,
dynamic: bool=True,
creation_time: int=5,
timeout_retries: int=3,
connection_error_retries: int=3,
callback: Callable=None,
):
'''
Class designed to batch index documents into Weaviate. Instantiating
this class will automatically configure the Weaviate batch client.
'''
self._client = client
self._callback = callback if callback else self._default_callback
self._client.batch.configure(batch_size=batch_size,
num_workers=num_workers,
dynamic=dynamic,
creation_time=creation_time,
timeout_retries=timeout_retries,
connection_error_retries=connection_error_retries,
callback=self._callback
)
def _default_callback(self, results: dict):
"""
Check batch results for errors.
Parameters
----------
results : dict
The Weaviate batch creation return value.
"""
if results is not None:
for result in results:
if "result" in result and "errors" in result["result"]:
if "error" in result["result"]["errors"]:
print(result["result"])
def batch_index_data(self,
data: List[dict],
class_name: str,
vector_property: str='content_embedding'
) -> None:
'''
Batch function for fast indexing of data onto Weaviate cluster.
This method assumes that self._client.batch is already configured.
'''
start = time.perf_counter()
with self._client.batch as batch:
for d in tqdm(data):
#define single document
properties = {k:v for k,v in d.items() if k != vector_property}
try:
#add data object to batch
batch.add_data_object(
data_object=properties,
class_name=class_name,
vector=d[vector_property]
)
except Exception as e:
print(e)
continue
end = time.perf_counter() - start
print(f'Batch job completed in {round(end/60, 2)} minutes.')
class_info = self._client.show_class_info()
for i, c in enumerate(class_info):
if c['class'] == class_name:
print(class_info[i])
self._client.batch.shutdown()
@dataclass
class WhereFilter:
'''
Simplified interface for constructing a WhereFilter object.
Args
----
path: List[str]
List of properties to filter on.
operator: str
Operator to use for filtering. Options: ['And', 'Or', 'Equal', 'NotEqual',
'GreaterThan', 'GreaterThanEqual', 'LessThan', 'LessThanEqual', 'Like',
'WithinGeoRange', 'IsNull', 'ContainsAny', 'ContainsAll']
value[dataType]: Union[int, bool, str, float, datetime]
Value to filter on. The dataType suffix must match the data type of the
property being filtered on. At least and only one value type must be provided.
'''
path: List[str]
operator: str
valueInt: int=None
valueBoolean: bool=None
valueText: str=None
valueNumber: float=None
valueDate = None
def post_init(self):
operators = ['And', 'Or', 'Equal', 'NotEqual','GreaterThan', 'GreaterThanEqual', 'LessThan',\
'LessThanEqual', 'Like', 'WithinGeoRange', 'IsNull', 'ContainsAny', 'ContainsAll']
if self.operator not in operators:
raise ValueError(f'operator must be one of: {operators}, got {self.operator}')
values = [self.valueInt, self.valueBoolean, self.valueText, self.valueNumber, self.valueDate]
if not any(values):
raise ValueError('At least one value must be provided.')
if len(values) > 1:
raise ValueError('At most one value can be provided.')
def todict(self):
return {k:v for k,v in self.__dict__.items() if v is not None} |