File size: 10,175 Bytes
9f954a0
8de4d6e
aa79e9e
 
028ae97
aa79e9e
028ae97
 
025b1f9
1398a0f
028ae97
 
025b1f9
 
028ae97
fbecea1
 
aa79e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025b1f9
 
 
 
 
 
8de4d6e
 
028ae97
 
aa79e9e
8de4d6e
 
 
 
 
 
025b1f9
aa79e9e
025b1f9
028ae97
025b1f9
028ae97
 
025b1f9
028ae97
025b1f9
 
 
 
028ae97
 
025b1f9
 
028ae97
aa79e9e
028ae97
025b1f9
 
 
028ae97
 
 
 
 
 
 
 
 
025b1f9
028ae97
 
aa79e9e
025b1f9
8de4d6e
 
 
 
025b1f9
 
 
 
 
 
 
 
 
 
028ae97
 
8de4d6e
028ae97
 
 
 
 
 
 
 
 
 
aa79e9e
025b1f9
 
 
028ae97
 
 
 
aa79e9e
 
028ae97
 
 
aa79e9e
 
025b1f9
 
aa79e9e
 
ac19811
1398a0f
 
025b1f9
028ae97
025b1f9
 
 
 
 
 
 
028ae97
 
 
 
 
 
025b1f9
 
028ae97
 
025b1f9
028ae97
 
 
 
 
 
 
8de4d6e
 
 
 
 
 
 
 
025b1f9
028ae97
 
 
 
 
 
 
 
 
 
 
 
1f967a0
025b1f9
8de4d6e
025b1f9
028ae97
025b1f9
 
 
028ae97
 
025b1f9
 
1f967a0
028ae97
 
 
 
 
025b1f9
028ae97
1f967a0
 
028ae97
 
025b1f9
 
 
 
 
 
 
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
ac19811
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import torch
import spaces

import numpy as np
import gradio as gr
from PIL import Image

from diffusers import DDPMScheduler
from diffusers.utils import load_image
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler

from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline

from huggingface_hub import hf_hub_download


def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
               pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):

    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        # ratio = min_side / min(h, w)
        # w, h = round(ratio*w), round(ratio*h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image


if not os.path.exists("models/adapter.pt"):
    hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
if not os.path.exists("models/aggregator.pt"):
    hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".")
if not os.path.exists("models/previewer_lora_weights.bin"):
    hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".")

device = "cuda" if torch.cuda.is_available() else "cpu"
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
dinov2_repo_id = "facebook/dinov2-large"
lcm_repo_id = "latent-consistency/lcm-lora-sdxl"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Load pretrained models.
print("Initializing pipeline...")
pipe = InstantIRPipeline.from_pretrained(
    sdxl_repo_id,
    torch_dtype=torch_dtype,
)

# Image prompt projector.
print("Loading LQ-Adapter...")
load_adapter_to_pipe(
    pipe,
    "models/adapter.pt",
    dinov2_repo_id,
)

# Prepare previewer
lora_alpha = pipe.prepare_previewers("models")
print(f"use lora alpha {lora_alpha}")
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
print(f"use lora alpha {lora_alpha}")
pipe.to(device=device, dtype=torch_dtype)
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)

pipe.scheduler = DDPMScheduler.from_pretrained(
    sdxl_repo_id,
    subfolder="scheduler"
)
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# Load weights.
print("Loading checkpoint...")
aggregator_state_dict = torch.load(
    "models/aggregator.pt",
    map_location="cpu"
)
pipe.aggregator.load_state_dict(aggregator_state_dict)
pipe.aggregator.to(device=device, dtype=torch_dtype)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
ultra HD, extreme meticulous detailing, skin pore detailing, \
hyper sharpness, perfect without deformations, \
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "

NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
watermark, signature, jpeg artifacts, deformed, lowres"

def unpack_pipe_out(preview_row, index):
    return preview_row[index][0]

def dynamic_preview_slider(sampling_steps):
    print(sampling_steps)
    return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1)

def dynamic_guidance_slider(sampling_steps):
    return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1)

def show_final_preview(preview_row):
    return preview_row[-1][0]

@spaces.GPU
def instantir_restore(
    lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
    creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0):
    if creative_restoration:
        if "lcm" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('lcm')
    else:
        if "previewer" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('previewer')

    if isinstance(guidance_end, int):
        guidance_end = guidance_end / steps
    elif guidance_end > 1.0:
        guidance_end = guidance_end / steps
    if isinstance(preview_start, int):
        preview_start = preview_start / steps
    elif preview_start > 1.0:
        preview_start = preview_start / steps
    print(lq)
    lq = load_image(lq)
    print(type(lq))
    lq = [resize_img(lq.convert("RGB"), size=(width, height))]
    generator = torch.Generator(device=device).manual_seed(seed)
    timesteps = [
        i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
    ]
    timesteps = timesteps[::-1]

    prompt = PROMPT if len(prompt)==0 else prompt
    neg_prompt = NEG_PROMPT

    out = pipe(
        prompt=[prompt]*len(lq),
        image=lq,
        num_inference_steps=steps,
        generator=generator,
        timesteps=timesteps,
        negative_prompt=[neg_prompt]*len(lq),
        guidance_scale=cfg_scale,
        control_guidance_end=guidance_end,
        preview_start=preview_start,
        previewer_scheduler=lcm_scheduler,
        return_dict=False,
        save_preview_row=True,
    )
    for i, preview_img in enumerate(out[1]):
        preview_img.append(f"preview_{i}")
    return out[0][0], out[1]

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks() as demo:
    gr.Markdown(
    """
    # InstantIR: Blind Image Restoration with Instant Generative Reference.

    ### **Official 🤗 Gradio demo of [InstantIR](https://arxiv.org/abs/2410.06551).**
    ### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!**
    ## Basic usage: revitalize your image
    1. Upload an image you want to restore;
    2. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency;
    3. Click `InstantIR magic!`.
    """)
    with gr.Row():
        lq_img = gr.Image(label="Low-quality image", type="filepath")
        with gr.Column():
            with gr.Row():
                steps = gr.Number(label="Steps", value=30, step=1)
                cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1)
            with gr.Row():
                height = gr.Number(label="Height", value=1024, step=1)
                weight = gr.Number(label="Weight", value=1024, step=1)
                seed = gr.Number(label="Seed", value=42, step=1)
            # guidance_start = gr.Slider(label="Guidance Start", value=1.0, minimum=0.0, maximum=1.0, step=0.05)
            guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1)
            preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1)
            prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="", value="")
            mode = gr.Checkbox(label="Creative Restoration", value=False)
    with gr.Row():
        with gr.Row():
            restore_btn = gr.Button("InstantIR magic!")
            clear_btn = gr.ClearButton()
        index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1)
    with gr.Row():
        output = gr.Image(label="InstantIR restored", type="filepath")
        preview = gr.Image(label="Preview", type="filepath")
    pipe_out = gr.Gallery(visible=False)
    clear_btn.add([lq_img, output, preview])
    restore_btn.click(
        instantir_restore, inputs=[
            lq_img, prompt, steps, cfg_scale, guidance_end,
            mode, seed, height, weight, preview_start,
        ],
        outputs=[output, pipe_out], api_name="InstantIR"
    )
    steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end)
    output.change(dynamic_preview_slider, inputs=steps, outputs=index)
    index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview)
    output.change(show_final_preview, inputs=pipe_out, outputs=preview)
    gr.Markdown(
    """
    ## Advance usage:
    ### Browse restoration variants:
    1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions;
    2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result.
    ### Creative restoration:
    1. Check the `Creative Restoration` checkbox;
    2. Input your text prompts in the `Restoration prompts` textbox;
    3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation.
    
    ## Examples
    Here are some examplar usage of InstantIR:
    """)
    # examples = gr.Gallery(label="Examples")

    gr.Markdown(
    """
    ## Citation
    If InstantIR is helpful to your work, please cite our paper via:

    ```
    @article{huang2024instantir,
        title={InstantIR: Blind Image Restoration with Instant Generative Reference},
        author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse},
        journal={arXiv preprint arXiv:2410.06551},
        year={2024}
    }
    ```
    """)

demo.queue().launch(debug=True)