File size: 19,325 Bytes
61d4541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2IdTjyqZHKK5"
      },
      "source": [
        "# Midterm - Spring 2023\n",
        "\n",
        "## Problem 1: Take-at-home  (45 points total)\n",
        "\n",
        "You are applying for a position at the data science team of USDA and you are given data associated with determining appropriate parasite treatment of canines. The suggested treatment options are determined based on a **logistic regression** model that predicts if the canine is infected with a parasite. \n",
        "\n",
        "The data is given in the site: https://data.world/ehales/grls-parasite-study/workspace/file?filename=CBC_data.csv  and more specifically in the CBC_data.csv file. Login using you University Google account to access the data and the description that includes a paper on the study (**you dont need to read the paper to solve this problem**). Your target variable $y$ column is titled `parasite_status`. \n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fp6F7zIuHKK-"
      },
      "source": [
        "### Question 1 - Feature Engineering (5 points)\n",
        "\n",
        "In this step you outline the following as potential features (this is a limited example - we can have many features as in your programming exercise below). \n",
        "\n",
        "Write the posterior probability expressions for logistic regression for the problem you are given to solve."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZDRhz6bDHKLA"
      },
      "source": [
        "$$p(y=1| \\mathbf{x}, \\mathbf w)=\\frac{p(x | y=1)p(y=1)}{p(x | y=1)p(y=1)+p(x|y=0)p(y=0)} = \\frac{1}{1+e^{-\\alpha}}=\\sigma(\\alpha)$$ \n",
        "\n",
        "$$p(y=0| \\mathbf{x}, \\mathbf w)=1-\\frac{p(x | y=1)p(y=1)}{p(x | y=1)p(y=1)+p(x|y=0)p(y=0)} = 1-\\sigma(\\alpha)$$\n",
        "\n",
        "the equeation for alpha is shown below. $$\\alpha=ln\\frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)}$$"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zXYe2qtSHKLB"
      },
      "source": [
        "\n",
        "\n",
        "### Question 2 - Decision Boundary (5 points)\n",
        "\n",
        "Write the expression for the decision boundary assuming that $p(y=1)=p(y=0)$. The decision boundary is the line that separates the two classes.\n",
        "\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5sM9vvj3HKLC"
      },
      "source": [
        "The decision boundary should be the intersection of the probability mass functions, so as to minimize false positives and false negatives. this can be written via the following equality:\n",
        "\n",
        "$$p(y=1|x,w)=p(y=0|x,w)$$\n",
        "\n",
        "which can also be written as the following:\n",
        "\n",
        "$$\\sigma(\\alpha)=1-\\sigma(\\alpha)$$\n",
        "\n",
        "visually, the decision boundary should sit at the intersection of the sigmoid line and the inverse simga line, representing the conditions where there is an equal probability that y=1 and y=0."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "uY7lH1geHKLD"
      },
      "source": [
        "\n",
        "\n",
        "### Question 3 - Loss function (5 points)\n",
        "\n",
        "Write the expression of the loss as a function of $\\mathbf w$ that makes sense for you to use in this problem. \n",
        "\n",
        "NOTE: The loss will be a function that will include this function: \n",
        "\n",
        "$$\\sigma(a) = \\frac{1}{1+e^{-a}}$$\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "or-qkG4MHKLE"
      },
      "source": [
        "$$L_{CE} = -\\Sigma^m_{i=1}[y_i\\ln(σ(w^Τx_i))+(1-y_i)\\ln(1-\\sigma(w^Τx_i)] $$"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qq1aXGcMHKLF"
      },
      "source": [
        "\n",
        "### Question 4 - Gradient (5 points)\n",
        "\n",
        "Write the expression of the gradient of the loss with respect to the parameters - show all your work.\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fZklUA8PHKLH"
      },
      "source": [
        "$$ \\nabla_\\mathbf w L_{CE} =\\Sigma^m_{i=1}[(σ(w^Τx_i)-y_i)x_i]$$"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WHj0C8T7HKLI"
      },
      "source": [
        "### Question 5 - Imbalanced dataset (10 points)\n",
        "\n",
        "You are now told that in the dataset  \n",
        "\n",
        "$$p(y=0) >> p(y=1)$$\n",
        "\n",
        "Can you comment if the accuracy of Logistic Regression will be affected by such imbalance?\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ft7xpMVIHKLK"
      },
      "source": [
        "If the p(y=0) is much larger than p(y=1), this will lead to the regression being much more likely to return ŷ=0. This will lead to a higher rate of false negatives, thereby effecting the accuracy of the Logisitic Regression. The model will have a low rate of false positives, however, as it will be much less likely to predict a positive in the first place. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iE0WczaxHKLL"
      },
      "source": [
        "\n",
        "### Question 6 - SGD (15 points)\n",
        "\n",
        "The interviewer was impressed with your answers and wants to test your programming skills. \n",
        "\n",
        "1. Use the dataset to train a logistic regressor that will predict the target variable $y$. \n",
        "\n",
        " 2. Report the harmonic mean of precision (p) and recall (r) i.e the  [metric called $F_1$ score](https://en.wikipedia.org/wiki/F-score) that is calculated as shown below using a test dataset that is 20% of each group. Plot the $F_1$ score vs the iteration number  $t$. \n",
        "\n",
        "$$F_1 = \\frac{2}{r^{-1} + p^{-1}}$$\n",
        "\n",
        "Your code includes hyperparameter optimization of the learning rate and mini batch size. Please learn about cross validation which is a splitting strategy for tuning models [here](https://scikit-learn.org/stable/modules/cross_validation.html).\n",
        "\n",
        "You are allowed to use any library you want to code this problem.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 99,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 321
        },
        "id": "keQIm2V6HKLN",
        "outputId": "0a4ae008-a656-4b91-c40f-b80653b25364"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "w vector:  [[-1.84834009e-03 -4.54038579e-03  7.88831514e-06  1.83512257e-03\n",
            "   3.41803018e-03 -2.00747551e-03 -3.22278484e-03  1.61564091e-04]]\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "<matplotlib.collections.PathCollection at 0x7ff0072dc520>"
            ]
          },
          "execution_count": 99,
          "metadata": {},
          "output_type": "execute_result"
        },
        {
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUkUlEQVR4nO3df2xd533f8fdnlOxwyWYlDltUlFOpsKtBgTNruVVSJMsyB46U/ohU123sdKizGXCLzViHNuqkFVgTD4WTeYhbYP5jRp3NddfagetowtJO8+oAHYLUNWWlUWVXjeK6sei0VmwrXVYttpTv/uCRQzEkdUle6lIP3y+A4D3Pee59vs89h59zcc7lvakqJEnt+lvDLkCStLwMeklqnEEvSY0z6CWpcQa9JDVuzbALmOmNb3xjbdy4cdhlSNJF5eDBg1+rqrHZ1q24oN+4cSMTExPDLkOSLipJ/mKudZ66kaTGGfSS1DiDXpIaZ9BLUuMMeklq3Ip7140kXez2HZrkzgNHee7kKdavG2X39s3s2jo+tHoMekkaoH2HJtn78GFOvXIGgMmTp9j78GGAoYW9QT8AK+3ore80zG3k/rG63Hng6Kshf9apV85w54GjBv3FaiUevXWuYW4j94/V57mTpxbUfiF4MXaJ5jt6a2UY5jZy/1h91q8bXVD7hWDQL9FKPHrrXMPcRu4fq8/u7ZsZXTtyTtvo2hF2b988pIoM+iVbiUdvnWuY28j9Y/XZtXWcO66/mvF1owQYXzfKHddfPdRTdQb9Eq3Eo7fONcxt5P6xOu3aOs7n9lzLn3/sh/ncnmuHfj3Gi7FLdHYD+q6KlWuY28j9QytBqmrYNZyj1+uVH1MsSQuT5GBV9WZb56kbSWqcQS9JjTPoJalxBr0kNa6voE+yI8nRJMeS7Jll/buSPJHkdJIbprVfk+TzSY4k+WKSDwyyeEnS+Z337ZVJRoC7geuA48DjSfZX1ZPTun0F+BDw4Rl3/xvgp6vqS0nWAweTHKiqk4MoXpLm4ofJfVs/76PfBhyrqqcBkjwA7AReDfqqeqZb963pd6yqP5t2+7kkzwNjwMmlFi5Jc/HD5M7Vz6mbceDZacvHu7YFSbINuAT48izrbk0ykWTixIkTC31oSTqHHyZ3rgtyMTbJ9wD3A/+0qr41c31V3VNVvarqjY2NXYiSJDXMD5M7Vz9BPwlcMW15Q9fWlyR/F/gM8EtV9YcLK0+SFs4PkztXP0H/OHBVkk1JLgFuBPb38+Bd/08Dv1FVDy2+TEnqnx8md67zBn1VnQZuAw4ATwGfqqojSW5P8n6AJD+Q5DjwE8B/SnKku/tPAu8CPpTkC93PNcsxEUk6ayV+VPAw+aFmktQAP9RMklYxg16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcX0FfZIdSY4mOZZkzyzr35XkiSSnk9wwY93NSb7U/dw8qMKl5bbv0CTv+NijbNrzGd7xsUfZd2hy2CVJi7LmfB2SjAB3A9cBx4HHk+yvqiendfsK8CHgwzPu+wbgl4EeUMDB7r4vDaZ8aXnsOzTJ3ocPc+qVMwBMnjzF3ocPA7Br6/gwS5MWrJ9X9NuAY1X1dFW9DDwA7JzeoaqeqaovAt+acd/twCNV9WIX7o8AOwZQt7Ss7jxw9NWQP+vUK2e488DRIVUkLV4/QT8OPDtt+XjX1o++7pvk1iQTSSZOnDjR50NLy+e5k6cW1C6tZCviYmxV3VNVvarqjY2NDbscifXrRhfULq1k/QT9JHDFtOUNXVs/lnJfaWh2b9/M6NqRc9pG146we/vmIVUkLV4/Qf84cFWSTUkuAW4E9vf5+AeA9yZ5fZLXA+/t2qQVbdfWce64/mrG140SYHzdKHdcf7UXYnVROu+7bqrqdJLbmAroEeCTVXUkye3ARFXtT/IDwKeB1wM/muSjVfXmqnoxyb9j6mABcHtVvbhMc5EGatfWcYNdTUhVDbuGc/R6vZqYmBh2GZJ0UUlysKp6s61bERdjJUnLx6CXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj+gr6JDuSHE1yLMmeWdZfmuTBbv1jSTZ27WuT3JfkcJKnkuwdcP2SpPM4b9AnGQHuBt4HbAFuSrJlRrdbgJeq6krgLuDjXftPAJdW1dXAW4GfOXsQkCRdGP28ot8GHKuqp6vqZeABYOeMPjuB+7rbDwHvSRKggNcmWQOMAi8Dfz2QyiVJfekn6MeBZ6ctH+/aZu1TVaeBrwOXMxX6/xf4KvAV4D9U1YszB0hya5KJJBMnTpxY8CQkSXNb7oux24AzwHpgE/ALSb5vZqequqeqelXVGxsbW+aSJGl16SfoJ4Erpi1v6Npm7dOdprkMeAH4IPA/quqVqnoe+BzQW2rRkqT+9RP0jwNXJdmU5BLgRmD/jD77gZu72zcAj1ZVMXW65lqAJK8F3g786SAKlyT157xB351zvw04ADwFfKqqjiS5Pcn7u273ApcnOQb8PHD2LZh3A69LcoSpA8Z/rqovDnoSkqS5ZeqF98rR6/VqYmJi2GVI0kUlycGqmvXUuP8ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIat2bYBUjShbTv0CR3HjjKcydPsX7dKLu3b2bX1plfg90Wg17SqrHv0CR7Hz7MqVfOADB58hR7Hz4M0HTYe+pG0qpx54Gjr4b8WadeOcOdB44OqaILw6CXtGo8d/LUgtpbYdBLWjXWrxtdUHsrDHpJq8bu7ZsZXTtyTtvo2hF2b988pIouDC/GSlo1zl5w9V03ktSwXVvHmw/2mfo6dZNkR5KjSY4l2TPL+kuTPNitfyzJxmnr3pLk80mOJDmc5DUDrF+SdB7nDfokI8DdwPuALcBNSbbM6HYL8FJVXQncBXy8u+8a4DeBn62qNwPvBl4ZWPWSpPPq5xX9NuBYVT1dVS8DDwA7Z/TZCdzX3X4IeE+SAO8FvlhVfwxQVS9U1RkkSRdMP0E/Djw7bfl41zZrn6o6DXwduBz4fqCSHEjyRJJfnG2AJLcmmUgyceLEiYXOQZI0j+V+e+Ua4J3AT3W/fyzJe2Z2qqp7qqpXVb2xsbFlLkmSVpd+gn4SuGLa8oaubdY+3Xn5y4AXmHr1/wdV9bWq+hvgd4F/sNSiJUn96yfoHweuSrIpySXAjcD+GX32Azd3t28AHq2qAg4AVyf5290B4B8BTw6mdElSP877PvqqOp3kNqZCewT4ZFUdSXI7MFFV+4F7gfuTHANeZOpgQFW9lOQTTB0sCvjdqvrMMs1FkjSLTL3wXjl6vV5NTEwMuwxJuqgkOVhVvdnW+Vk3ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY3rK+iT7EhyNMmxJHtmWX9pkge79Y8l2Thj/ZuSfCPJhwdUtySpT+cN+iQjwN3A+4AtwE1JtszodgvwUlVdCdwFfHzG+k8Av7f0ciVJC9XPK/ptwLGqerqqXgYeAHbO6LMTuK+7/RDwniQBSLIL+HPgyEAqliQtSD9BPw48O235eNc2a5+qOg18Hbg8yeuAfw18dOmlSpIWY7kvxn4EuKuqvjFfpyS3JplIMnHixIllLkmSVpc1ffSZBK6Ytryha5utz/Eka4DLgBeAtwE3JPn3wDrgW0n+X1X9x+l3rqp7gHsAer1eLWIekqQ59BP0jwNXJdnEVKDfCHxwRp/9wM3A54EbgEerqoB/eLZDko8A35gZ8pKk5XXeoK+q00luAw4AI8Anq+pIktuBiaraD9wL3J/kGPAiUwcDSdIKkKkX3itHr9eriYmJYZchSReVJAerqjfbOv8zVpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNa6voE+yI8nRJMeS7Jll/aVJHuzWP5ZkY9d+XZKDSQ53v68dcP2SpPM4b9AnGQHuBt4HbAFuSrJlRrdbgJeq6krgLuDjXfvXgB+tqquBm4H7B1W4JKk//byi3wYcq6qnq+pl4AFg54w+O4H7utsPAe9Jkqo6VFXPde1HgNEklw6icElSf/oJ+nHg2WnLx7u2WftU1Wng68DlM/r8OPBEVX1z5gBJbk0ykWTixIkT/dYuSerDBbkYm+TNTJ3O+ZnZ1lfVPVXVq6re2NjYhShJklaNfoJ+Erhi2vKGrm3WPknWAJcBL3TLG4BPAz9dVV9easGSpIXpJ+gfB65KsinJJcCNwP4ZffYzdbEV4Abg0aqqJOuAzwB7qupzA6pZkrQA5w367pz7bcAB4CngU1V1JMntSd7fdbsXuDzJMeDngbNvwbwNuBL4t0m+0P1818BnIUmaU6pq2DWco9fr1cTExLDLkKSLSpKDVdWbbZ3/GStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhq3pp9OSXYAvwaMAL9eVR+bsf5S4DeAtwIvAB+oqme6dXuBW4AzwL+sqgMDq36afYcmufPAUZ47eYr160bZvX0zu7aOD6x9vjGWu6YLMb/Wx17MvjOo7TrM/bb17bqY53y5t8UgxxiUVNX8HZIR4M+A64DjwOPATVX15LQ+/xx4S1X9bJIbgR+rqg8k2QL8NrANWA/8L+D7q+rMXOP1er2amJhY0CT2HZpk78OHOfXKtx92dO0IP/7WcX7n4OSS2++4/mqAWce44/qrZ90gg6ppvrEHNb/Wx55rG8Hc22lQ23UxY19Mz+1KHHu+53wug/x7HdT2Xug8khysqt6s6/oI+h8EPlJV27vlvQBVdce0Pge6Pp9Psgb4S2AM2DO97/R+c423mKB/x8ceZfLkqe9oH0k4M8v8Fto+vm4UYNYxxteN8rk91y5bTfONPaj5tT72XNsI5t5Og9quixn7YnpuV+LY8z3ncxnk3+ugtvdC5zFf0Pdz6mYceHba8nHgbXP1qarTSb4OXN61/+GM+37HISrJrcCtAG9605v6KOlcz83y5AGzPnmLaZ/r8edbN6ia5ht7UPNrfexBbr+FbtfFjH0xPbcrcez5xpjLhfh7HeS+s1Ar4mJsVd1TVb2q6o2NjS34/uu7VwkzjSQDaV+/bnTOMRbaPsixBzW/1see63HmWzeo7bqYsS+m53Yljj3fcz6XYe5rg5zHXPoJ+kngimnLG7q2Wft0p24uY+qibD/3XbLd2zczunbknLbRtSPc9LYrBtK+e/vmOcfYvX3zstY039iDml/rY8+1jWDu7TSo7bqYsS+m53Yljj3fcz6XYe5rg5zHXPo5dfM4cFWSTUyF9I3AB2f02Q/cDHweuAF4tKoqyX7gt5J8gqmLsVcBfzSo4s86e8FitqvWve99w0Daz+r3yvgga5pv7EHNr/WxF7PvDGq7DnO/bX27LvQ5vxDbYpBjDMp5L8YCJPkh4FeZenvlJ6vqV5LcDkxU1f4krwHuB7YCLwI3VtXT3X1/CfhnwGngX1XV78031mIuxkrSarekd91caAa9JC3cfEG/Ii7GSpKWj0EvSY0z6CWpcQa9JDVuxV2MTXIC+IslPMQbga8NqJyLifNeXZz36tLPvL+3qmb9j9MVF/RLlWRirivPLXPeq4vzXl2WOm9P3UhS4wx6SWpci0F/z7ALGBLnvbo479VlSfNu7hy9JOlcLb6ilyRNY9BLUuOaCfokO5IcTXIsyZ5h17OcknwyyfNJ/mRa2xuSPJLkS93v1w+zxkFLckWSzyZ5MsmRJD/Xtbc+79ck+aMkf9zN+6Nd+6Ykj3X7+4NJLhl2rcshyUiSQ0n+e7e8Wub9TJLDSb6QZKJrW/S+3kTQd19gfjfwPmALcFP3xeSt+i/Ajhlte4Dfr6qrgN/vlltyGviFqtoCvB34F902bn3e3wSuraq/D1wD7EjyduDjwF1VdSXwEnDL8EpcVj8HPDVtebXMG+AfV9U1094/v+h9vYmgB7YBx6rq6ap6GXgA2DnkmpZNVf0BU5/7P91O4L7u9n3ArgtZ03Krqq9W1RPd7f/D1B//OO3Pu6rqG93i2u6ngGuBh7r25uYNkGQD8MPAr3fLYRXMex6L3tdbCfrZvsB8cF/PcnH47qr6anf7L4HvHmYxyynJRqa+5OYxVsG8u9MXXwCeBx4BvgycrKrTXZdW9/dfBX4R+Fa3fDmrY94wdTD/n0kOJrm1a1v0vt7PVwnqItN9jWOT75tN8jrgd5j6trK/zrQvVm513lV1BrgmyTrg08DfG25Fyy/JjwDPV9XBJO8ecjnD8M6qmkzyXcAjSf50+sqF7uutvKK/IF9CvsL9VZLvAeh+Pz/kegYuyVqmQv6/VtXDXXPz8z6rqk4CnwV+EFiX5OwLtRb393cA70/yDFOnYq8Ffo325w1AVU12v59n6uC+jSXs660E/atfYN5dhb+RqS8sX03OfkE73e//NsRaBq47P3sv8FRVfWLaqtbnPda9kifJKHAdU9cnPgvc0HVrbt5VtbeqNlTVRqb+nh+tqp+i8XkDJHltkr9z9jbwXuBPWMK+3sx/xs72BebDrWj5JPlt4N1MfXTpXwG/DOwDPgW8iamPef7Jqpp5wfaileSdwP8GDvPtc7b/hqnz9C3P+y1MXXgbYeqF2aeq6vYk38fUK903AIeAf1JV3xxepcunO3Xz4ar6kdUw726On+4W1wC/VVW/kuRyFrmvNxP0kqTZtXLqRpI0B4Nekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNe7/A9ZCdgVOdEY7AAAAAElFTkSuQmCC",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "needs_background": "light"
          },
          "output_type": "display_data"
        }
      ],
      "source": [
        "from numpy.core.fromnumeric import size\n",
        "# write your code here\n",
        "\n",
        "import pandas as pd\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn import datasets\n",
        "from sklearn import svm\n",
        "\n",
        "data=pd.read_csv(\"./CBC_data.csv\").dropna()\n",
        "y=data[[\"PARASITE_STATUS\"]].values\n",
        "X=data[[\"RBC\",\"HGB\",\"WBC\",\"EOS.CNT\",\"MONO.CNT\",\"NUT.CNT\",\"PL.CNT\",\"LYMP.CNT\"]]\n",
        "\n",
        "n_epochs=50\n",
        "eta=3*10**-7\n",
        "ones=[1,1,1,1,1,1,1,1]\n",
        "w=np.matrix(np.zeros(X.shape[1]))\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
        "\n",
        "m=y_train.size\n",
        "\n",
        "def sig_fun(w, X):\n",
        "  output = 1.0/(1 + np.exp(-np.dot(w,X.T)))\n",
        "  #print(np.exp(-np.dot(w,X.T)),\"  -  \",w,X.T)\n",
        "  return   output\n",
        "\n",
        "\n",
        "def grad_fun(w,X,y):\n",
        "  #print(np.dot((sig_fun(w,X)-y),X))\n",
        "  return np.dot((sig_fun(w,X)-y),X)\n",
        "\n",
        "def pred_values(w, X):\n",
        "    probabilities = sig_fun(w, X)\n",
        "    pred_value = np.where(probabilities >= .5, 1, 0) \n",
        "    return np.squeeze(pred_value)\n",
        "\n",
        "def f1_score(X_test,y_test,w):\n",
        "  predictions = pred_values(w,X_test)\n",
        "  fp=0;tp=0;fn=0\n",
        "  for i in range(y_test.size):\n",
        "    yi=1 if (y_train[i])==(\"Positive\") else 0\n",
        "    #print(yi,predictions[i])\n",
        "    if(yi==1):\n",
        "      if(predictions[i]==1):\n",
        "        tp+=1\n",
        "      else:\n",
        "        fn+=1\n",
        "    else:\n",
        "      if(predictions[i]==1):\n",
        "        fp+=1   \n",
        "  #print(fp,fn,tp)\n",
        "  if(tp==0):\n",
        "    return 0\n",
        "  recall=tp/(tp+fn)\n",
        "  percision=tp/(tp+fp)\n",
        "  return 2/(percision**-1+recall**-1)\n",
        "\n",
        "\n",
        "iteration_number=[]\n",
        "F_score_v_iteration=[]\n",
        "\n",
        "\n",
        "for epoch in range(n_epochs):\n",
        "  for iteration in range(m):\n",
        "    random_index=np.random.randint(m)\n",
        "    xi=X_train[random_index:random_index+1].values\n",
        "    #if(type(np.dot(ones,xi.T)[0])!=type(1)):\n",
        "    #  continue\n",
        "    #print(xi)\n",
        "    yi=1 if (y_train[random_index:random_index+1][0])==(\"Positive\") else 0\n",
        "    gradients=grad_fun(w,xi,yi)\n",
        "    w=w-eta*gradients\n",
        "  iteration_number.append(epoch)\n",
        "  F_score_v_iteration.append(f1_score(X_test,y_test,w))\n",
        "    #print(w,gradients)\n",
        "    #print(yi,(y_train[random_index:random_index+1][0]))\n",
        "\n",
        "print(\"w vector: \",w)\n",
        "plt.scatter(iteration_number,F_score_v_iteration)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "aOh-_F2u-Fvt"
      },
      "source": [
        "Most of the items in the data set are cases where the animal did not have a parasite. This means that the combined probability of an animal having a parasite, which was our positive case, is very low. Our model does not handle this very well, and tends to always predict no parasite. In this case, when the number of true positives is 0, we set the f1 score equal to zero to avoid a division by zero error during the runtime. This is shown on the graph above."
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "ai-course",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.10.8"
    },
    "orig_nbformat": 4,
    "vscode": {
      "interpreter": {
        "hash": "62556f7a043365a66e0918c892755cfafede529a87e97207556f006a109bade4"
      }
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}