File size: 24,521 Bytes
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62cfb53
81f8834
b0b5a77
 
62cfb53
b0b5a77
 
 
 
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798f7db
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b5a77
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d30abe
 
 
 
 
 
 
b0b5a77
 
 
4d30abe
 
 
02cc20b
 
 
 
 
 
973f661
02cc20b
 
 
 
8c72c0e
02cc20b
 
 
 
973f661
02cc20b
 
 
 
 
 
 
 
 
 
 
 
973f661
02cc20b
 
 
 
 
 
 
973f661
02cc20b
 
 
 
 
 
 
 
 
 
 
0b38fab
8c72c0e
0b38fab
 
 
 
 
62cfb53
0b38fab
 
 
 
 
 
 
 
 
 
02cc20b
54eab22
973f661
02cc20b
 
 
 
 
 
 
973f661
02cc20b
 
 
 
 
 
54eab22
4d30abe
02cc20b
 
 
 
 
 
 
 
 
 
 
973f661
02cc20b
 
 
 
54eab22
02cc20b
973f661
 
 
02cc20b
54eab22
02cc20b
 
 
 
 
 
973f661
54eab22
 
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54eab22
02cc20b
 
 
 
 
 
54eab22
02cc20b
 
 
 
 
 
 
 
 
 
 
 
54eab22
 
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
b0b5a77
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import gradio as gr
import spaces
css = '''
.gradio-container {width: 85% !important}
'''
from animatediff.utils.util import save_videos_grid

import random
from infer import load_model
MAX_SEED=10000
import uuid
from insightface.app import FaceAnalysis
import os
import os
import cv2
from diffusers.utils import load_image
from insightface.utils import face_align
from PIL import Image
import torch
import argparse
# From command line read command adaface_ckpt_path
parser = argparse.ArgumentParser()
parser.add_argument('--adaface_ckpt_path', type=str, 
                    default='models/adaface/subjects-celebrity2024-05-16T17-22-46_zero3-ada-30000.pt')
# Don't use 'sd15' for base_model_type; it just generates messy videos.
parser.add_argument('--base_model_type', type=str, default='sar')
parser.add_argument('--adaface_base_model_type', type=str, default='sar')
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# model = load_model()
# This FaceAnalysis uses a different model from what AdaFace uses, but it's fine.
# This is just to crop the face areas from the uploaded images.
app = FaceAnalysis(name="buffalo_l", root='models/insightface', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(320, 320))
device = "cuda" if args.gpu is None else f"cuda:{args.gpu}"

id_animator, adaface = load_model(base_model_type=args.base_model_type, 
                                  adaface_base_model_type=args.adaface_base_model_type,
                                  adaface_ckpt_path=args.adaface_ckpt_path, 
                                  device=device)
basedir     = os.getcwd()
savedir     = os.path.join(basedir,'samples')
os.makedirs(savedir, exist_ok=True)

#print(f"### Cleaning cached examples ...")
#os.system(f"rm -rf gradio_cached_examples/")

def swap_to_gallery(images):
    # Update uploaded_files_gallery, show files, hide clear_button_column
    # Or:
    # Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)

def remove_back_to_files():
    # Hide uploaded_files_gallery,    show clear_button_column,      hide files,           reset init_img_selected_idx
    # Or:
    # Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files,  reset init_img_selected_idx
    return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True), gr.update(value="0")

def get_clicked_image(data: gr.SelectData):
    return data.index
    
@spaces.GPU
def gen_init_images(uploaded_image_paths, prompt, adaface_id_cfg_scale, out_image_count=3):
    if uploaded_image_paths is None:
        print("No image uploaded")
        return None, None, None
    # uploaded_image_paths is a list of tuples:
    # [('/tmp/gradio/249981e66a7c665aaaf1c7eaeb24949af4366c88/jensen huang.jpg', None)]
    # Extract the file paths.
    uploaded_image_paths = [path[0] for path in uploaded_image_paths]
    # gen_init_images() uses a larger adaface_id_cfg_scale to generate more authentic faces.
    adaface_id_cfg_scale_ = min(6, adaface_id_cfg_scale * 2)
    adaface_subj_embs = \
        adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
                                            out_id_embs_scale=adaface_id_cfg_scale_, update_text_encoder=True)
    
    if adaface_subj_embs is None:
        raise gr.Error(f"Failed to detect any faces! Please try with other images")
        
    # Generate two images each time for the user to select from.
    noise = torch.randn(out_image_count, 3, 512, 512)
    # samples: A list of PIL Image instances.
    samples = adaface(noise, prompt, out_image_count=out_image_count, verbose=True)

    face_paths = []
    for sample in samples:        
        random_name = str(uuid.uuid4())
        face_path = os.path.join(savedir, f"{random_name}.jpg")
        face_paths.append(face_path)
        sample.save(face_path)
        print(f"Generated init image: {face_path}")

    # Update uploaded_init_img_gallery, update and hide init_img_files, hide init_clear_button_column
    return gr.update(value=face_paths, visible=True), gr.update(value=face_paths, visible=False), gr.update(visible=True)

@spaces.GPU(duration=90)
def generate_image(image_container, uploaded_image_paths, init_img_file_paths, init_img_selected_idx, 
                   init_image_strength, init_image_final_weight,
                   prompt, negative_prompt, num_steps, video_length, guidance_scale, seed, attn_scale, image_embed_scale,
                   is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale, 
                   adaface_anneal_steps, progress=gr.Progress(track_tqdm=True)):

    prompt = prompt + " 8k uhd, high quality"
    if " shot" not in prompt:
        prompt = prompt + ", medium shot"
        
    prompt_img_lists=[]
    for path in uploaded_image_paths:
        img = cv2.imread(path)
        faces = app.get(img)
        face_roi = face_align.norm_crop(img, faces[0]['kps'], 112)
        random_name = str(uuid.uuid4())
        face_path = os.path.join(savedir, f"{random_name}.jpg")
        cv2.imwrite(face_path, face_roi)
        # prompt_img_lists is a list of PIL images.
        prompt_img_lists.append(load_image(face_path).resize((224,224)))

    if adaface is None or not is_adaface_enabled:
        adaface_prompt_embeds = None
    else:
        if adaface_ckpt_path != args.adaface_ckpt_path:
            # Reload the embedding manager
            adaface.load_subj_basis_generator(adaface_ckpt_path)

        adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
                                            out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
        # adaface_prompt_embeds: [1, 77, 768].
        adaface_prompt_embeds, _ = adaface.encode_prompt(prompt)

    # init_img_file_paths is a list of image paths. If not chose, init_img_file_paths is None.
    if init_img_file_paths is not None:
        init_img_selected_idx = int(init_img_selected_idx)
        init_img_file_path = init_img_file_paths[init_img_selected_idx]
        init_image = cv2.imread(init_img_file_path)
        init_image = cv2.resize(init_image, (512, 512))
        init_image = Image.fromarray(cv2.cvtColor(init_image, cv2.COLOR_BGR2RGB))
        print(f"init_image: {init_img_file_path}")
    else:
        init_image = None

    sample = id_animator.generate(prompt_img_lists, 
                                  init_image      = init_image,
                                  init_image_strength = (init_image_strength, init_image_final_weight),
                                  prompt = prompt,
                                  negative_prompt = negative_prompt,
                                  adaface_embeds  = adaface_prompt_embeds,
                                  # adaface_scale is not so useful, and when it's set >= 2, weird artifacts appear. 
                                  # Here it's limited to 0.7~1.3.
                                  adaface_scale       = adaface_power_scale,
                                  num_inference_steps = num_steps,
                                  adaface_anneal_steps = adaface_anneal_steps,
                                  seed=seed,
                                  guidance_scale      = guidance_scale,
                                  width               = 512,
                                  height              = 512,
                                  video_length        = video_length,
                                  attn_scale          = attn_scale,
                                  image_embed_scale   = image_embed_scale,
                                )
    
    save_sample_path = os.path.join(savedir, f"{random_name}.mp4")
    save_videos_grid(sample, save_sample_path)
    return save_sample_path

def validate_prompt(prompt):
    if not prompt:
        raise gr.Error("Prompt cannot be blank")

examples = [
    [
        "demo/ann.png",
        ["demo/ann.png" ],
        "A young girl with a passion for reading, curled up with a book in a cozy nook near a window",
        "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck,",
        30,
        8, 8290,1,16
    ],
    [
        "demo/lecun.png",
        ["demo/lecun.png" ],
        "Iron Man soars through the clouds, his repulsors blazing",
        "worst quality, low quality, jpeg artifacts, ugly, duplicate, blurry, long neck",
        30,
        8, 4993,0.7,16
    ],
    [
        "demo/mix.png",
        ["demo/lecun.png","demo/ann.png"],
        "A musician playing a guitar, fingers deftly moving across the strings, producing a soulful melody",
        "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
        30,
        8, 1897,0.9,16
    ],
    [
        "demo/zendaya.png",
        ["demo/zendaya.png" ],
        "A woman on a serene beach at sunset, the sky ablaze with hues of orange and purple.",
        "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
        30,
        8, 5992,1,16
    ],
    [
        "demo/qianlong.png",
        ["demo/qianlong.png" ],
        "A chef in a white apron, complete with a toqueblanche, garnishing a gourmet dish",
        "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, UnrealisticDream",
        30,
        8, 1844,0.8,16
    ],
    [
        "demo/augustus.png",
        ["demo/augustus.png" ],
        "A man with dyed pink and purple hair, styledin a high ponytail",
        "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
        30,
        8, 870,0.7,16
    ]
]

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        # AdaFace-Animate: Zero-Shot Subject-Driven Video Generation for Humans
        """
    )
    gr.Markdown(
        """
<b>Official demo</b> for our NeurIPS 2024 submission <b>AdaFace: A Versatile Face Encoder for Zero-Shot Diffusion Model Personalization</b>.<br>

❗️**Tips**❗️
- You can upload one or more subject images for generating ID-specific video.
- Try different parameter combinations for the best generation quality.
- Usage explanations and demos: [Readme](https://huggingface.co/spaces/adaface-neurips/adaface-animate/blob/main/README2.md).
- AdaFace Text-to-Image: <a href="https://huggingface.co/spaces/adaface-neurips/adaface" style="display: inline-flex; align-items: center;">
  AdaFace 
  <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow" alt="Hugging Face Spaces" style="margin-left: 5px;">
  </a>

**TODO:**
- ControlNet integration.
        """
    )

    with gr.Row():
        with gr.Column():
            files = gr.File(
                        label="Drag / Select 1 or more photos of a person's face",
                        file_types=["image"],
                        file_count="multiple"
                    )
            image_container = gr.Image(label="image container", sources="upload", type="numpy", height=256, visible=False)
            uploaded_files_gallery = gr.Gallery(label="Subject images", visible=False, columns=3, rows=1, height=300)
            with gr.Column(visible=False) as clear_button_column:
                remove_and_reupload = gr.ClearButton(value="Remove and upload subject images", components=files, size="sm")

            init_img_files = gr.File(
                            label="[Optional] Select 1 image for initialization, or generate 3 images with the button below and select 1",
                            file_types=["image"],
                            file_count="multiple"
                    )
            init_img_container = gr.Image(label="init image container", sources="upload", type="numpy", height=256, visible=False)
            # Although there's only one image, we still use columns=3, to scale down the image size.
            # Otherwise it will occupy the full width, and the gallery won't show the whole image.
            uploaded_init_img_gallery = gr.Gallery(label="Init image", visible=False, columns=3, rows=1, height=200)
            # placeholder is just hint, not the real value. So we use "value='0'" instead of "placeholder='0'".
            init_img_selected_idx = gr.Textbox(label="Selected init image index", value="0", visible=False)

            init_image_strength = gr.Slider(
                    label="Init Image Strength",
                    info="How much the init image should influence each frame. 0: no influence (scenes are more dynamic), 3: strongest influence (scenes are more static).",
                    minimum=0,
                    maximum=3,
                    step=0.25,
                    value=1.5,
                )
            init_image_final_weight = gr.Slider(
                    label="Final Weight of the Init Image",
                    info="How much the init image should influence the end of the video",
                    minimum=0,
                    maximum=0.25,
                    step=0.025,
                    value=0.1,
                )

            with gr.Column(visible=False) as init_clear_button_column:
                remove_init_and_reupload = gr.ClearButton(value="Remove and upload new init image", components=init_img_files, size="sm")
            with gr.Column(visible=True) as init_gen_button_column:
                gen_init = gr.Button(value="Generate 3 new init images")

            prompt = gr.Dropdown(label="Prompt",
                       info="Try something like 'man/woman walking on the beach'. If the face is not in focus, try adding 'face portrait of' at the beginning.",
                       value=None,
                       allow_custom_value=True,
                       filterable=False,
                       choices=[
                            "woman ((best quality)), ((masterpiece)), ((realistic)), long highlighted hair, futuristic silver armor suit, confident stance, high-resolution, living room, smiling, head tilted, perfect smooth skin",
                            "woman walking on the beach, sunset, orange sky, eye level shot",
                            "woman in a white apron and chef hat, garnishing a gourmet dish, full body view, long shot",
                            "woman dancing pose among folks in a park, waving hands",
                            "woman in iron man costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot",
                            "woman jedi wielding a lightsaber, star wars, full body view, eye level shot",
                            "woman playing guitar on a boat, ocean waves",
                            "woman with a passion for reading, curled up with a book in a cozy nook near a window",
                            "woman running pose in a park, eye level shot",
                            "woman in superman costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot"
                       ])
            
            image_embed_scale = gr.Slider(
                    label="ID-Animator Image Embedding Scale",
                    info="The scale of the ID-Animator image embedding (influencing coarse facial features and poses)",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=0.8,
                )
            attn_scale = gr.Slider(
                    label="Attention Processor Scale",
                    info="The scale of the ID embeddings on the attention (the higher, the more focus on the face, less on the background)" ,
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=0.8,
                )
            adaface_id_cfg_scale = gr.Slider(
                    label="AdaFace CFG Scale",
                    info="The CFG scale of the AdaFace ID embeddings (influencing fine facial features)",
                    minimum=0.5,
                    maximum=6,
                    step=0.25,
                    value=1.5,
                )

            submit = gr.Button("Generate Video")

            with gr.Accordion(open=False, label="Advanced Options"):
                video_length = gr.Slider(
                    label="video_length",
                    info="Do not change, otherwise the video will be messy",
                    minimum=16,
                    maximum=21,
                    step=1,
                    value=16,
                    interactive=False,
                )
                is_adaface_enabled = gr.Checkbox(label="Enable AdaFace", 
                                                 info="Enable AdaFace for better face details. If unchecked, it falls back to ID-Animator (https://huggingface.co/spaces/ID-Animator/ID-Animator).",
                                                 value=True)
                adaface_ckpt_path = gr.Textbox(
                    label="AdaFace checkpoint path", 
                    placeholder=args.adaface_ckpt_path,
                    value=args.adaface_ckpt_path,
                )

                adaface_power_scale = gr.Slider(
                        label="AdaFace Embedding Power Scale",
                        info="Increase this scale slightly only if the face is defocused or the face details are not clear",
                        minimum=0.8,
                        maximum=1.2,
                        step=0.1,
                        value=1,
                    )
                             
                # adaface_anneal_steps is no longer necessary, but we keep it here for future use.
                adaface_anneal_steps = gr.Slider(
                    label="AdaFace Anneal Steps",
                    minimum=0,
                    maximum=2,
                    step=1,
                    value=0,
                    visible=False,
                )
                                
                negative_prompt = gr.Textbox(
                    label="Negative Prompt", 
                    placeholder="low quality",
                    value="face portrait, (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, bare breasts, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, long neck, UnrealisticDream",
                )
                num_steps = gr.Slider( 
                    label="Number of sampling steps",
                    minimum=25,
                    maximum=100,
                    step=1,
                    value=40,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale (usually you don't need to change)",
                    minimum=1.0,
                    maximum=10.0,
                    step=0.5,
                    value=4,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=985,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=False, info="Uncheck for reproducible results")

        with gr.Column():
            result_video = gr.Video(label="Generated Animation", interactive=False)
        
        files.upload(fn=swap_to_gallery, inputs=files,     outputs=[uploaded_files_gallery, clear_button_column, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column, files, init_img_selected_idx])

        init_img_files.upload(fn=swap_to_gallery, inputs=init_img_files, outputs=[uploaded_init_img_gallery, init_clear_button_column, init_img_files])
        remove_init_and_reupload.click(fn=remove_back_to_files,        outputs=[uploaded_init_img_gallery, init_clear_button_column, 
                                                                                init_img_files, init_img_selected_idx])
        gen_init.click(fn=gen_init_images, inputs=[uploaded_files_gallery, prompt, adaface_id_cfg_scale], 
                       outputs=[uploaded_init_img_gallery, init_img_files, init_clear_button_column])
        uploaded_init_img_gallery.select(fn=get_clicked_image, inputs=None, outputs=init_img_selected_idx)

        submit.click(fn=validate_prompt,
                     inputs=[prompt],outputs=None).success(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
                 fn=generate_image,
                 inputs=[image_container, files, init_img_files, init_img_selected_idx, init_image_strength, init_image_final_weight,
                         prompt, negative_prompt, num_steps, video_length, guidance_scale, 
                         seed, attn_scale, image_embed_scale, 
                         is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale, adaface_anneal_steps],
                 outputs=[result_video]
        )
    gr.Examples( fn=generate_image, examples=[], #examples, 
                 inputs=[image_container, files, init_img_files, init_img_selected_idx, init_image_strength, init_image_final_weight,
                         prompt, negative_prompt, num_steps, video_length, guidance_scale, 
                         seed, attn_scale, image_embed_scale, 
                         is_adaface_enabled, adaface_ckpt_path, adaface_id_cfg_scale, adaface_power_scale, adaface_anneal_steps], 
                 outputs=[result_video], cache_examples=True )

demo.launch(share=True, server_name=args.ip, ssl_verify=False)