File size: 16,549 Bytes
fae4ef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# A3C++ a modified version of Asynchronous Advantage actor critic algorithm
# -----------------------------------
#
# A3C paper: https://arxiv.org/abs/1602.01783
#
# The A3C implementation is available at:
# https://jaromiru.com/2017/02/16/lets-make-an-a3c-theory/
# by: Jaromir Janisch, 2017
# Two variations are implemented: A memory replay and a deterministic search following argmax(pi) instead of pi as a probability distribution
# Every action selection is made following the action with the highest probability pi
# Author: Taha Nakabi
# Args: 'train' for training the model anything else will skip the training and try to use already saved models
import tensorflow as tf
import numpy as np
import gym, time, random, threading
from keras.callbacks import TensorBoard
from keras.models import *
from keras.layers import *
from keras import backend as K
from tcl_env_dqn_1 import *
print("after import")
import os
# This is where the models are saved and retrieved from
path = os.getcwd()
# path = r'E:\member\XiongC\Sci Project\01-Reinforcement Learning\Github\DRL-for-microgrid-energy-management-master\DRL-for-microgrid-energy-management-master'
MODELS_DIRECTORY = path + '/success1'
# For tensor board
NAME= "A3C++logs/A3C++{}".format(int(time.time()))
# -- constants
# Threading parameters
RUN_TIME = 5000
THREADS = 16
OPTIMIZERS = 2
THREAD_DELAY = 0.000001
# Reinforcement learning parameters
N_STEP_RETURN = 15
GAMMA = 1.0
GAMMA_N = GAMMA ** N_STEP_RETURN
# Epsilon greedy strategy parameters
EPS_START = .5
EPS_STOP = .001
EPS_DECAY = 5e-6
# Memory replay parameters
MIN_BATCH = 200
TR_FREQ = 100
# Advantage actor-critic parameters
LOSS_V = 0.4 # v loss coefficient
LOSS_ENTROPY = 1.0 # entropy coefficient
# Initializing max rewards for models' saving purposes
max_reward = -100.0
# Training iterations and learning rate
TRAINING_ITERATIONS = 1
LEARNING_RATE = 1e-3
# ---------
# The brain class will handle building the neural network, sampling experiences for training and preparing and running the training process.
# ---------
class Brain:
# Memory
train_queue = [[], [], [], [], []] # s, a, r, s', s' terminal mask
train_queue_copy = [[], [], [], [], []] # s, a, r, s', s' terminal mask
lock_queue = threading.Lock()
def __init__(self, **kwargs):
self.env = kwargs.get("environment")
self.learning_rate = kwargs.get('learning_rate', LEARNING_RATE)
self.tr_freq = kwargs.get('training_frequency', TR_FREQ)
self.min_batch = kwargs.get('min_batch', MIN_BATCH)
self.gamman = kwargs.get('gamma_n', GAMMA_N)
self.models_directory = kwargs.get('models_directory', MODELS_DIRECTORY)
self.num_state = self.env.env.observation_space.shape[0]
self.num_tcl =self.env.env.num_tcls
self.num_actions= self.env.env.action_space.n
self.none_state=np.zeros(self.num_state)
tf.compat.v1.disable_eager_execution()
# self.session = tf.compat.v1.Session()
# K.set_session(self.session)
K.manual_variable_initialization(True)
self.model = self._build_model(num_state=self.num_state, num_tcls=self.num_tcl)
self.graph = self._build_graph(self.model)
# self.session.run(tf.compat.v1.global_variables_initializer())
# self.default_graph = tf.compat.v1.get_default_graph()
# We keep track of the best rewards achieved so far for each day
self.max_reward = max_reward
self.rewards = {}
for i in range(self.env.env.day0, self.env.env.dayn):
self.rewards[i] = self.max_reward
# self.default_graph.finalize() # avoid modifications
def _build_model(self, num_state, num_tcls):
l_input = Input(batch_shape=(None,num_state))
print('input shape')
print(format(l_input.shape.as_list()))
# The TCLs states are fed individually to the neural network but they are simply being averaged
l_input1 = Lambda(lambda x: x[:, 0:num_tcls])(l_input)
l_input2 = Lambda(lambda x: x[:, num_tcls:])(l_input)
print(self.env.env.num_tcls)
l_input1 = Reshape((num_tcls, 1))(l_input1)
l_Pool = AveragePooling1D(pool_size=num_tcls)(l_input1)
l_Pool = Reshape([1])(l_Pool)
l_dense = Concatenate()([l_Pool, l_input2])
l_dense = Dense(100, activation='relu')(l_dense)
l_dense = Dropout(0.3)(l_dense)
out = Dense(self.num_actions, activation='softmax')(l_dense)
out_value = Dense(1, activation='linear')(l_dense)
model = Model(inputs=l_input, outputs=[out, out_value])
model._make_predict_function() # have to initialize before threading
return model
def _build_graph(self, model):
s_t = tf.compat.v1.placeholder(tf.float32, shape=(None, self.num_state))
a_t = tf.compat.v1.placeholder(tf.float32, shape=(None, self.num_actions))
r_t = tf.compat.v1.placeholder(tf.float32, shape=(None, 1)) # not immediate, but discounted n step reward
p, v = model(s_t)
log_prob = tf.math.log(tf.reduce_sum(input_tensor=p * a_t, axis=1, keepdims=True) + 1e-10)
advantage = r_t - v
loss_policy = -log_prob * tf.stop_gradient(advantage) # maximize policy
loss_value = LOSS_V * tf.square(advantage) # minimize value error
entropy = LOSS_ENTROPY * (tf.reduce_sum(input_tensor=p * tf.math.log(p + 1e-10), axis=1, keepdims=True))
loss_total = tf.reduce_mean(input_tensor=loss_policy + loss_value + entropy)
optimizer = tf.compat.v1.train.RMSPropOptimizer(self.learning_rate)
minimize = optimizer.minimize(loss_total)
return s_t, a_t, r_t, minimize, loss_total
def optimize(self):
# self.train_queue_copy serves as a counter of the number of observations we make between training sessions
if len(self.train_queue_copy[0])<self.tr_freq or len(self.train_queue_copy[0])<self.min_batch :
time.sleep(0) # yield
return
with self.lock_queue:
if len(self.train_queue_copy[0])<self.tr_freq: # more thread could have passed without lock
return # we can't yield inside lock
# We take a fraction from the memory and throw away the rest, the following experiences are added on top of the sampled experiences.
# This sampling process makes the current memory include old and new experiences. After many sampling iterations the very old experiences will slowly fade and the newest will remain.
self.train_queue = random.sample(np.array(self.train_queue).T.tolist(), self.min_batch)
self.train_queue = np.array(self.train_queue).T.tolist()
s, a, r, s_, s_mask = self.train_queue_copy
self.train_queue_copy = [[], [], [], [], []]
s = np.vstack(s)
a = np.vstack(a)
r = np.vstack(r)
s_ = np.vstack(s_)
s_mask = np.vstack(s_mask)
if len(s) > 5 * self.min_batch: print("Optimizer alert! Minimizing batch of %d" % len(s))
v = self.predict_v(s_)
r = r + self.gamman * v * s_mask # set v to 0 where s_ is terminal state
s_t, a_t, r_t, minimize, loss = self.graph
print("Training...")
# for _ in range(TRAINING_ITERATIONS):
minimize(s,a,r)
# self.session.run([minimize,loss], feed_dict={s_t: s, a_t: a, r_t: r})
print("Done...")
# pushing experiences into the memory
def train_push(self, s, a, r, s_):
with self.lock_queue:
self.train_queue[0].append(s)
self.train_queue[1].append(a)
self.train_queue[2].append(r)
self.train_queue_copy[0].append(s)
self.train_queue_copy[1].append(a)
self.train_queue_copy[2].append(r)
if s_ is None:
self.train_queue[3].append(self.none_state)
self.train_queue[4].append(0.)
self.train_queue_copy[3].append(self.none_state)
self.train_queue_copy[4].append(0.)
else:
self.train_queue[3].append(s_)
self.train_queue[4].append(1.)
self.train_queue_copy[3].append(s_)
self.train_queue_copy[4].append(1.)
def predict(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return p, v
def predict_p(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return p
def predict_p_vote(self, s):
# Boost learning. Several versions of the successfull models are voting for the best action
votes=[]
# print('retreiving models from {}'.format(self.models_directory))
for filename in os.listdir(self.models_directory):
if filename.endswith(".h5"):
# print(filename)
# with self.default_graph.as_default():
try:
# print('trying to load weights')
self.model.load_weights(self.models_directory+"/"+filename)
# print('weights loaded')
p = self.model.predict(s)[0][0]
# print('probability predicted')
# votes.append(p)
votes.append(ACTIONS[np.argmax(p)])
except :
print(filename+"didn't vote!")
pass
boosted_p = np.average(np.array(votes),axis=0)
return np.rint(boosted_p).astype(int)
# return ACTIONS[np.argmax(boosted_p)]
def predict_v(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return v
# ---------
# The agent handles the interactions with the environment and the selection of actions, stocking and retreiving experiences from the memory.
# ---------
frames = 0
class Agent:
def __init__(self, eps_start, eps_end, eps_decay, num_actions):
self.eps_start = eps_start
self.eps_end = eps_end
self.eps_decay = eps_decay
self.memory = [] # used for n_step return
self.R = 0.
self.num_actions = num_actions
def getEpsilon(self):
return max(self.eps_start - frames * self.eps_decay,self.eps_end) # linearly interpolate
def act(self, s,render=False, br=None):
global frames, brain
if br != None:
brain = br
eps = self.getEpsilon()
frames = frames + 1
# Epsilon-greedy strategy:
if random.random() < eps:
p = np.random.dirichlet(np.ones(self.num_actions), size=1)
else:
s = np.array([s])
if render:
print('starting the vote')
a = brain.predict_p_vote(s)
p= np.random.dirichlet(np.ones(self.num_actions), size=1)
print(a)
return list(a),p
p = brain.predict_p(s)
# In the original version, the action selection follows a stochasic policy as follows:
# a = np.random.choice(NUM_ACTIONS, p=p.reshape(NUM_ACTIONS,))
# We follow a deterministic policy as follow:
a = np.argmax(p.reshape(self.num_actions,))
return a,p
def train(self, s, a, r, s_):
def get_sample(memory, n):
s, a, _, _ = memory[0]
_, _, _, s_ = memory[n - 1]
return s, a, self.R, s_
a_cats = a
# a_cats[a] = 1
self.memory.append((s, a_cats, r, s_))
self.R = (self.R + r * GAMMA_N) / GAMMA
if s_ is None:
while len(self.memory) > 0:
n = len(self.memory)
s, a, r, s_ = get_sample(self.memory, n)
brain.train_push(s, a, r, s_)
self.R = (self.R - self.memory[0][2]) / GAMMA
self.memory.pop(0)
self.R = 0
if len(self.memory) >= N_STEP_RETURN:
s, a, r, s_ = get_sample(self.memory, N_STEP_RETURN)
brain.train_push(s, a, r, s_)
self.R = self.R - self.memory[0][2]
self.memory.pop(0)
# possible edge case - if an episode ends in <N steps, the computation is incorrect
# ---------
# The environment here is defined as a thread so that we can run the algorithm as a multi-thread process
# ---------
class Environment(threading.Thread):
stop_signal = False
def __init__(self, render=False, eps_start=EPS_START, eps_end=EPS_STOP, eps_decay=EPS_DECAY, **kwargs):
threading.Thread.__init__(self)
self.render = render
self.env = MicroGridEnv(**kwargs)
self.agent = Agent(eps_start, eps_end, eps_decay,num_actions=self.env.action_space.n)
self.brain = None
def runEpisode(self,day=None, pplt=True, web = False):
# print('resetting the environment')
if web==False:
s = self.env.reset_all(day=day)
else:
s = self.env.reset(day=day)
R = 0
while True:
time.sleep(THREAD_DELAY) # yield
# print('Acting')
a, p = self.agent.act(s,self.render, self.brain)
# print('stepping')
s_, r, done, _ = self.env.step(a)
R += r
# print('rendering')
if self.render:
self.env.render(R)
if done: # terminal state
s_ = None
if not self.render:
aa = np.zeros(shape=(NUM_ACTIONS,))
aa[a] = 1
self.agent.train(s, aa, r, s_)
s = s_
if done:
break
print("episode has been ran")
print(R)
if web==False:
REWARDS[self.env.day].append(R)
if self.render:
return R
if R > brain.rewards[self.env.day] and self.agent.getEpsilon()<0.2:
print('new max found: '+str(R))
print("-------------------------------------------------------------------------------------------------")
try:
# Uncomment the following line for tensorboard
writer = tf.compat.v1.summary.FileWriter(NAME, brain.session.graph)
brain.model.save(MODELS_DIRECTORY+"/A3C++" + str(self.env.day) + ".h5")
print("Model saved")
except:
pass
brain.rewards[self.env.day] = R
def run(self):
while not self.stop_signal:
self.runEpisode()
def stop(self):
self.stop_signal = True
# ---------
class Optimizer(threading.Thread):
stop_signal = False
def __init__(self):
threading.Thread.__init__(self)
def run(self):
while not self.stop_signal:
brain.optimize()
def stop(self):
self.stop_signal = True
if __name__ =="__main__":
import sys
TRAIN=False
# #
# if str(sys.argv[1]) == 'train':
# TRAIN = True
DAY0 = 0
DAYN = 10
REWARDS = {}
for i in range(DAY0,DAYN):
REWARDS[i]=[]
env_test = Environment(render=True, eps_start=0., eps_end=0., day0=DAY0, dayn=DAYN, iterations=24)
NUM_STATE = env_test.env.observation_space.shape[0]
NUM_ACTIONS = env_test.env.action_space.n
NONE_STATE = np.zeros(NUM_STATE)
brain = Brain(environment=env_test) # brain is global in A3C
if TRAIN:
envs = [Environment(day0=DAY0, dayn=DAYN) for i in range(THREADS)]
opts = [Optimizer() for i in range(OPTIMIZERS)]
t0=time.time()
for o in opts:
o.start()
for e in envs:
e.start()
time.sleep(RUN_TIME)
for e in envs:
e.stop()
for e in envs:
e.join()
for o in opts:
o.stop()
for o in opts:
o.join()
brain.model.save("success00/A3C++" + ".h5")
print("Training finished")
print('training_time:', time.time()-t0)
# Save the rewards' list for each day
import pickle
with open("REWARDS_A3C++train.pkl", 'wb') as f:
pickle.dump(REWARDS, f, pickle.HIGHEST_PROTOCOL)
try:
for day in range(DAY0,DAYN):
env_test.runEpisode(day)
print("average reward: ",np.average([list(REWARDS[i])[-1] for i in range(DAY0,DAYN)]))
import pickle
# with open("REWARDS_A3C++test.pkl", 'wb') as f:
# pickle.dump(REWARDS, f, pickle.HIGHEST_PROTOCOL)
except NameError:
print(NameError)
|