File size: 20,444 Bytes
7a739f2
c982048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8522bf
 
 
 
 
 
 
 
 
 
 
 
52d4f49
 
f8522bf
 
 
9473b92
bff81b1
f8522bf
2142374
 
 
 
 
938a9a6
d349362
2142374
6a4790d
f8522bf
6a4790d
f8522bf
 
 
 
 
 
 
 
922ade1
 
f8522bf
 
3bd7632
 
 
cb49343
f8522bf
8080d41
c982048
857a588
 
 
 
 
 
 
 
 
7f931a7
146cdbe
452b4eb
857a588
632d798
8e09244
78b1f17
857a588
 
632d798
6daff1a
4b505c0
36731b0
 
857a588
 
 
7141efe
fe6947b
 
 
 
c982048
922ade1
36731b0
 
f8522bf
 
bf2e735
 
782651d
78b1f17
 
30e9217
f8522bf
 
 
 
52d4f49
 
81d7480
 
 
 
bff81b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0945673
 
 
9f8913a
52d4f49
 
 
145f602
 
209d293
523a632
 
 
 
60185cb
90e25d7
 
 
491411e
 
 
 
 
 
 
60185cb
491411e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209d293
491411e
 
 
 
 
f4b9e89
491411e
ecb159f
491411e
 
 
 
 
 
f8522bf
db6bbe8
 
bf2e735
36731b0
3aacff9
f8522bf
8080d41
f8522bf
 
705a5b8
f8522bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a739f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033c30f
 
7a739f2
 
 
 
 
db6bbe8
 
7a739f2
 
 
 
 
 
 
 
 
 
e3988ad
 
 
 
 
90e25d7
e3988ad
033c30f
e3988ad
90e25d7
 
 
 
 
 
 
 
7a739f2
 
 
 
 
 
 
 
90e25d7
 
0c990ec
7a739f2
e3988ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# NonToxicGlazeAdvisor_Chat_with_Docs_Groq_Edition_1 - app.py - 27-03-2024

# STREAMLIT:
# https://www.datacamp.com/tutorial/streamlit:
#
# st.title(): This function allows you to add the title of the app. 
# st.header(): This function is used to set header of a section. 
# st.markdown(): This function is used to set a markdown of a section. 
# st.subheader(): This function is used to set sub-header of a section. 
# st.caption(): This function is used to write caption. 
# st.code(): This function is used to set a code. 
# st.latex(): This function is used to display mathematical expressions formatted as LaTeX.
# 
# st.title ("this is the app title")
# st.header("this is the header ")
# st.markdown("this is the markdown")
# st.subheader("this is the subheader")
# st.caption("this is the caption")
# st.code("x=2021")
# st.latex(r''' a+a r^1+a r^2+a r^3 ''')



# JB:
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated. 
# Importing from langchain will no longer be supported as of langchain==0.2.0.
# Please import from langchain-community instead:
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
# To install langchain-community run `pip install -U langchain-community`.
from langchain_community.embeddings import FastEmbedEmbeddings

import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
# JB:
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OllamaEmbeddings

# JB:
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader

# JB:
# File Directory
# This covers how to load all documents in a directory.
# Under the hood, by default this uses the UnstructuredLoader.
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
import chardet

from langchain_community.vectorstores import FAISS
# from langchain.vectorstores import Chroma
# from langchain_community.vectorstores import Chroma

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
import time
from dotenv import load_dotenv

import glob

load_dotenv()  #

groq_api_key = os.environ['GROQ_API_KEY']
# groq_api_key = "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" # os.environ['GROQ_API_KEY']
# groq_api_key = "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" # JB OK 24-03-2024
# print("groq_api_key: ", groq_api_key)

# st.title("Chat with Docs - Groq Edition :) ")
# # st.title ("this is the app title")
# st.title("Non-Toxic Glaze Advisor:")
# st.subheader("A tool for getting advicgroqe on non-toxic ceramic glazes for earthenware temperature ranges.")
# st.subheader("Victor Benchuijsen  : (Glaze techniques / Ceramics)")
# st.subheader("Jan Bours           : Artificial Intelligence / Data Science / Natural Language Processing (ALL RIGHTS RESERVED)")
# st.write("---------------------------------")
# st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 1 - March 18, 2024")
# st.write("---------------------------------")

st.title("Adviseur voor niet-giftige glazuren:")
st.subheader("Een gereedschap gebaseerd op Kunstmatige Intelligentie (AI) om advies te krijgen over niet-giftige keramische glazuren voor aardewerk temperatuur bereiken.")
st.write("---------------------------------")
st.subheader("Victor Benckhuijsen  : (Glazuur technieken / Keramiek)")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Victor_Benckhuijsen_2.png', caption='Victor Benckhuijsen')
# st.subheader("---------------------------------")
# st.write("---------------------------------")
st.subheader("Jan Bours           : Artificial Intelligence / Data Science / Natural Language Processing")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Jan_Bours_2.png', caption='Jan Bours')
st.write("---------------------------------")
st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 1 - March 26, 2024")
st.write("---------------------------------")

# st.header("LIST OF ALL THE LOADED DOCUMENTS: ")
st.header("LIJST MET ALLE ACTUEEL GELADEN DOCUMENTEN: ")

st.write("")
pdf_files  = glob.glob("*.pdf")
# word_files = glob.glob("*.docx")
for file in pdf_files:
# for file in word_files:
    st.subheader(file)

st.write("---------------------------------")

if "vector" not in st.session_state:

    start = time.process_time()
    
    st.write("Even geduld a.u.b. ........")
    # st.header("Chunking, embedding, storing in FAISS vectorstore (Can take a long time!).")
    # st.subheader("Wait till this hase been done before you can enter your query! .......")
    
    # st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
    st.session_state.embeddings = FastEmbedEmbeddings() # JB


    # st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
    # st.session_state.docs = st.session_state.loader.load()                           # ORIGINAL
    # https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
    # https://python.langchain.com/docs/integrations/document_loaders/merge_doc
    # from langchain_community.document_loaders import PyPDFLoader
    # loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
    #
    # https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
    # 
    # https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory 
    # !!!!!
    # PyPDF Directory
    # Load PDFs from directory
    # from langchain_community.document_loaders import PyPDFDirectoryLoader
    # loader = PyPDFDirectoryLoader("example_data/")
    # docs = loader.load()
    #
    # ZIE OOK:
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
    # Using MathPix
    # Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
    # from langchain_community.document_loaders import MathpixPDFLoader
    # loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
    # data = loader.load()
    # pdf_file_path = "*.pdf"                                                 # JB
    # st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load()   # JB
    # st.session_state.loader = PyPDFLoader(*.pdf).load()                     # JB syntax error *.pdf !
    # st.session_state.loader = PyPDFDirectoryLoader("*.pdf")                 # JB PyPDFDirectoryLoader("example_data/")   
    # chunks = self.text_splitter.split_documents(docs)
    # chunks = filter_complex_metadata(chunks)

    # JB:
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
    # st.session_state.docs = st.session_state.loader.load()
    # loader = PyPDFDirectoryLoader(".")
    # docs = loader.load()
    # st.session_state.docs = docs


    # https://docs.streamlit.io/library/api-reference/status/st.status
    # st.status(label, *, expanded=False, state="running")
    with st.status("Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store ...", expanded=True) as status:
        # st.write("Searching for data...")
        # time.sleep(2)
        # st.write("Found URL.")
        # time.sleep(1)
        # st.write("Downloading data...")
        # time.sleep(1)
        #status.update(label="Download complete!", state="complete", expanded=False)

        st.write("Laden van de PDF documenten...")
        # JB:
        # https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
        # text_loader_kwargs={'autodetect_encoding': True}
        text_loader_kwargs={'autodetect_encoding': False}
        path = '../'
        # loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
        # PyPDFDirectoryLoader (TEST):
        # loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
        # loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
        loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
        docs = loader.load()
        st.session_state.docs = docs

        # JB 18-03-2024:
        # https://python.langchain.com/docs/integrations/document_loaders/
        # MICROSOFT WORD:
        # https://python.langchain.com/docs/integrations/document_loaders/microsoft_word
        # 1 - Using Docx2txt
        # Load .docx using Docx2txt into a document.
        # %pip install --upgrade --quiet  docx2txt
        # from langchain_community.document_loaders import Docx2txtLoader
        # loader = Docx2txtLoader("example_data/fake.docx")
        # data = loader.load()
        # data
        # [Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]
        #
        # 2A - Using Unstructured
        # from langchain_community.document_loaders import UnstructuredWordDocumentLoader
        # loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
        # data = loader.load()
        # data
        # [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]
        #
        # 2B - Retain Elements
        # Under the hood, Unstructured creates different “elements” for different chunks of text.
        # By default we combine those together, but you can easily keep that separation by specifying mode="elements".
        # loader = UnstructuredWordDocumentLoader("example_data/fake.docx", mode="elements")
        # data = loader.load()
        # data[0]
        # Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)
        #
        # 2A - Using Unstructured
        # from langchain_community.document_loaders import UnstructuredWordDocumentLoader
        # loader = UnstructuredWordDocumentLoader(path, glob="**/*.docx")
        # docs = loader.load()
        # st.session_state.docs = docs


        st.write("Splitting / chunking de teksten...")
        st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)

        st.write("Genereer de Vector Store (kan enige minuten duren)...")        
        # https://python.langchain.com/docs/integrations/vectorstores/faiss
        # docs_and_scores = db.similarity_search_with_score(query)
        # Saving and loading
        # You can also save and load a FAISS index. 
        # This is useful so you don’t have to recreate it everytime you use it.
        # db.save_local("faiss_index")
        # new_db = FAISS.load_local("faiss_index", embeddings)
        # docs = new_db.similarity_search(query)
        # docs[0]
        # Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
        #
        st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
    
        # st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
        #st.session_state.vector.save_local("faiss_index")
        # The de-serialization relies loading a pickle file. 
        # Pickle files can be modified to deliver a malicious payload that results in execution of arbitrary code on your machine.
        # You will need to set `allow_dangerous_deserialization` to `True` to enable deserialization. If you do this, make sure that you trust the source of the data.
    
        #st.session_state.vector = FAISS.load_local("faiss_index", st.session_state.embeddings, allow_dangerous_deserialization=True)
    
        # ZIE: 
        # ZIE VOOR EEN APP MET CHROMADB:
        # https://github.com/vndee/local-rag-example/blob/main/rag.py
        # https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
        # Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
        # st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB

        # print(f"Response time: {time.process_time() - start}")
        st.write(f"Response time voor: Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store: {time.process_time() - start} seconds")

st.write("---------------------------------")
    
# st.title("Chat with Docs - Groq Edition :) ")
# st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")

llm = ChatGroq(
            temperature=0.2,
            groq_api_key=groq_api_key, 
            model_name='mixtral-8x7b-32768'
    )

prompt = ChatPromptTemplate.from_template("""
Answer the following question based only on the provided context. 
Think step by step before providing a detailed answer. 
I will tip you $200 if the user finds the answer helpful. 
<context>
{context}
</context>
Question: {input}""")

document_chain = create_stuff_documents_chain(llm, prompt)

retriever = st.session_state.vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)

## prompt = st.text_input("Input your prompt here") #, key=key)
#prompt = st.text_input("Stel hieronder Uw vraag:") #, key=key)
#
## If the user hits enter
#if prompt:
#    # Then pass the prompt to the LLM
#    start = time.process_time()
#    response = retrieval_chain.invoke({"input": prompt})
#    # print(f"Response time: {time.process_time() - start}")
#    st.write(f"Response time: {time.process_time() - start} seconds")
#
#    st.write(response["answer"])
#
#    # With a streamlit expander
#    with st.expander("Document Similarity Search"):
#        # Find the relevant chunks
#        for i, doc in enumerate(response["context"]):
#            # print(doc)
#            # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#            st.write(doc)
#            st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#            
#            
#            st.write(doc.page_content)
#            st.write("--------------------------------")
#
#st.write("---------------------------------")


# ZIE:
# https://raw.githubusercontent.com/streamlit/llm-examples/main/Chatbot.py
# from openai import OpenAI
# import streamlit as st

with st.sidebar:
    # openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
    UserEmailAdress = st.text_input("Vul Uw email adres hier in: ", key="UserEmailAdress", type="password")
    "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
    "[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)"
    "[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"

st.title("💬 Chatbot")
st.caption("🚀 A streamlit chatbot powered by mixtral-8x7b-32768 Groq LLM (VERY FAST !). temperature=0.2")

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]

for msg in st.session_state.messages:
    st.chat_message(msg["role"]).write(msg["content"])

if prompt := st.chat_input():
    #if not openai_api_key:
    #    st.info("Please add your OpenAI API key to continue.")
    #    st.stop()

    # Then pass the prompt to the LLM
    start = time.process_time()
    response = retrieval_chain.invoke({"input": prompt})
    # print(f"Response time: {time.process_time() - start}")
    st.write(f"Response time van de LLM: {time.process_time() - start} seconds")

    # st.write(response["answer"])

    # https://docs.streamlit.io/library/api-reference/chat/st.chat_message
    # st.chat_message(name, *, avatar=None)
    # The avatar shown next to the message. Can be one of:
    # - A single emoji, e.g. "🧑‍💻", "🤖", "🦖". Shortcodes are not supported.
    # - An image using one of the formats allowed for st.image: path of a local image file;
    #   URL to fetch the image from; an SVG image; array of shape (w,h) or (w,h,1) for a monochrome image,
    #   (w,h,3) for a color image, or (w,h,4) for an RGBA image.
    #   If None (default), uses default icons if name is "user", "assistant", "ai", "human" or the first letter of the name value.

    #client = OpenAI(api_key=openai_api_key)
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user").write(prompt)
    # response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
    # msg = response.choices[0].message.content
    msg = response["answer"]
    st.session_state.messages.append({"role": "assistant", "content": msg})
    # st.chat_message("assistant").write(msg)
    # MET ALS AVATAR EEN IMAGE VAN VICTOR:
    st.chat_message("assistant", avatar="https://huggingface.co/spaces/JBHF/NonToxicGlazeAdvisor_Chat_with_Docs_Groq_Edition_1/blob/main/Victor_Benckhuijsen_2.png").write(msg)

    # With a streamlit expander
    with st.expander("Document Similarity Search"):
        # Find the relevant chunks
        for i, doc in enumerate(response["context"]):
            # print(doc)
            # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
            st.write(doc)
            st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
            
            
            st.write(doc.page_content)
            st.write("--------------------------------")

st.write("---------------------------------")



#i=0
#while True:
#
#    # data = ["input1", "input2", "input3"]
#
#    #for i, item in enumerate(data):
#    key = f"input_{i}"
#    # text_input = st.text_input(f"Enter value for {item}", key=key)
#    # Access the value directly
#    print(f"Value for key: {key}")
#
#    i=i+1
#    
#    prompt = st.text_input("Input your prompt here", key=key)
#
#
#    # If the user hits enter
#    if prompt:
#        # Then pass the prompt to the LLM
#        start = time.process_time()
#        response = retrieval_chain.invoke({"input": prompt})
#        # print(f"Response time: {time.process_time() - start}")
#        st.write(f"Response time: {time.process_time() - start} seconds")
#
#        st.write(response["answer"])
#
#        # With a streamlit expander
#        with st.expander("Document Similarity Search"):
#            # Find the relevant chunks
#            for i, doc in enumerate(response["context"]):
#                # print(doc)
#                # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#                st.write(doc)
#                st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#            
#            
#                st.write(doc.page_content)
#                st.write("--------------------------------")
#
#    st.write("---------------------------------")