File size: 13,862 Bytes
0d499ae
 
9abc53e
 
 
fd9103b
 
9abc53e
 
 
 
 
 
 
 
cd7dc2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abc53e
 
 
cd7dc2b
c14f973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7dc2b
 
 
 
0d499ae
40e2bb2
 
 
 
cb269f5
 
 
 
 
ab31d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abc53e
 
 
 
ff385fd
 
 
 
9abc53e
39119c2
 
 
 
 
 
9abc53e
 
ff385fd
9abc53e
 
 
 
 
 
 
 
fd9103b
 
 
 
 
9abc53e
6bbef59
 
 
 
 
 
 
ab31d59
56e157b
 
 
 
cb269f5
0d499ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
ToDo

- Get API keys and passwords from environment !:
...



- Save the vectorstore in a persistent location !:
HF Spaces has an ephermal, non-persistent file storage!
If you save a file from within your (streamlit) application,
that file is not kept when your session has ended.
Solution: save that file in a persistent location
such as AWS bucket, GITHUB, or on HF.

See:
julien-c/persistent-space-dataset · Datasets at Hugging Face

https://huggingface.co/datasets/julien-c/persistent-space-dataset

HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!

https://huggingface.co/spaces/julien-c/persistent-data/blob/main/app.py

——->


DUPLICATED TO:
https://huggingface.co/spaces/JBHF/persistent-data?logs=container



EVERNOTE :
https://www.evernote.com/shard/s313/nl/41973486/1b07098e-3376-4316-abb3-b3d0996ebf03/
HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!



20-03-2024


---


HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!

https://huggingface.co/spaces/julien-c/persistent-data/blob/main/app.py

——->


DUPLICATED TO:
https://huggingface.co/spaces/JBHF/persistent-data?logs=container
...



------------------

I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!

POE WEB-SEARCH:
https://poe.com/s/6MTNnCP4tYGFqXUgjppX


EVERNOTE :
https://www.evernote.com/shard/s313/nl/41973486/87117657-5e23-497d-af42-0dac60f5e68f/
I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!



22-03-2024


---

I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that - POE WEB-SEARCH - 22-03-2024 !!!!!

POE WEB-SEARCH:
https://poe.com/s/6MTNnCP4tYGFqXUgjppX



Knip bron: I%20want%20to%20persist%20files%20in%20a%20Streamlit%20python%20application%20on%20Hugging%20Faces.%20Explain%20me%20in%20painstakingly%20detail%20how%20to%20do%20that%20-%20Poe



Shared conversation
Web-Search · 14:37

I want to persist files in a Streamlit python application on Hugging Faces. Explain me in painstakingly detail how to do that



Web-Search
	Poe
	
To persist files in a Streamlit Python application on Hugging Faces, you can follow these steps:

1. Choose a storage solution: First, you need to decide on a storage solution to persist your files. Some popular options include local file storage, cloud storage services like Amazon S3 or Google Cloud Storage, or using the Hugging Face Datasets library.
2. Import the necessary libraries: Depending on the storage solution you choose, you may need to import the corresponding libraries. For example, if you're using Hugging Face Datasets, you'll need to import the datasets library.
3. Create a function to save the files: Write a function that takes the file data as input and saves it to the chosen storage solution. This function should handle any necessary authentication or authorization steps required by the storage solution.
4. Integrate the function into your Streamlit app: In your Streamlit app, create a file upload component using the st.file_uploader function. When a file is uploaded, pass the file data to the save function you created in the previous step to persist it.
5. Display the persisted files: If you want to display the persisted files in your Streamlit app, you can retrieve them from the storage solution and render them using Streamlit's built-in components like st.image or st.download_button.

Here's an example of how you can persist files using Hugging Face Datasets:

	python
```
import streamlit as st
from datasets import Dataset
# Create a function to save the files
def save_files(file_data):
    # Save the file data to a persistent dataset using Hugging Face Datasets
    dataset = Dataset.from_dict({"file_data": file_data})
    dataset.save_to_disk("path/to/dataset")
# Create the Streamlit app
def main():
    st.title("File Upload App")
    file = st.file_uploader("Upload a file")
    if file is not None:
        # Read the file data
        file_data = file.read()

        # Save the file
        save_files(file_data)

        st.success("File saved successfully!")
if __name__ == "__main__":
    main()

```

In this example, the save_files function takes the file data as input and saves it to a persistent dataset using Hugging Face Datasets. The main function is the entry point of the Streamlit app and includes a file upload component. When a file is uploaded, the file data is passed to the save_files function to persist it.
---
Learn more:
1. Save Data from Streamlit Session to Persist Changes to HF Datasets - Datasets - Hugging Face Forums
2. Streamlit Spaces
3. Deploy your Streamlit Web App Using Hugging Face | by Imanuelyosi | Medium






Can you provide an example of how to retrieve and display the persisted files in the Streamlit app?


Web-Search
	Poe
	
Certainly! Here's an example of how you can retrieve and display persisted files in a Streamlit app:

	python
```
import streamlit as st
from datasets import Dataset
# Function to retrieve the persisted files
def retrieve_files():
    # Load the dataset containing the persisted files using Hugging Face Datasets
    dataset = Dataset.load_from_disk("path/to/dataset")
    # Retrieve the file data from the dataset
    file_data = dataset["file_data"]
    return file_data
# Create the Streamlit app
def main():
    st.title("Persisted Files App")
    # Retrieve the persisted files
    file_data = retrieve_files()

    # Display the persisted files
    if file_data:
        for file in file_data:
            st.write(f"File Name: {file.name}")
            st.write(f"File Size: {file.size} bytes")
            st.write(f"File Type: {file.type}")
            st.write("---")
if __name__ == "__main__":
    main()

```

In this example, the retrieve_files function loads the dataset containing the persisted files using Hugging Face Datasets and retrieves the file data. The main function is the entry point of the Streamlit app. It calls the retrieve_files function to get the persisted files and then displays the file name, size, and type using Streamlit's st.write function.
---
Learn more:
1. Streamlit Share - Persist files - ☁️ Community Cloud - Streamlit
2. View files from streamlit cloud - ☁️ Community Cloud - Streamlit
3. Where are saved files? -  Deployment - Streamlit






How can I install the Hugging Face Datasets library?


Web-Search
	Poe
	
To install the Hugging Face Datasets library, you can follow these steps:

1. Virtual environment: It is recommended to install Hugging Face Datasets in a virtual environment to keep things organized and avoid dependency conflicts. You can create and navigate to your project directory using the following commands:
2. Activate virtual environment: Start a virtual environment inside your project directory. You can activate the virtual environment with the following command:
3. Install with pip: The most straightforward way to install Hugging Face Datasets is using pip. Run the following command to install the library:
4. Verify installation: To check if Hugging Face Datasets has been properly installed, you can run the following command:
   
   This command downloads version 1 of the Stanford Question Answering Dataset (SQuAD), loads the training split, and prints the first training example.

That's it! You have successfully installed the Hugging Face Datasets library.
---
Learn more:
1. Installation — datasets 1.11.0 documentation - Hugging Face
2. Installation
3. Installation - datasets 1.16.1 documentation






How can I save a FAISS vector store file as a persistent file generated as part of a RAG application running as Streamlit application on Hugging Face Spaces


Web-Search
	Poe
	
To save a FAISS vector store file as a persistent file in a RAG application running as a Streamlit application on Hugging Face Spaces, you can follow these steps:

1. Import the necessary libraries: First, make sure you have the required libraries installed. You will need faiss for working with the FAISS vector store and huggingface_hub for saving the file to a persistent location.
2. Load the FAISS vector store: Use the faiss.read_index function to load the FAISS index from the vector store file. This will give you an instance of the FAISS index that you can work with.
3. Perform your operations: Perform any necessary operations on the FAISS index, such as querying or updating the vectors.
4. Save the FAISS index: Once you have made the desired changes to the FAISS index, you can save it as a persistent file. To do this, you can use the index.serialize method provided by FAISS. This method serializes the index into a byte array.
5. Upload the serialized index: To save the serialized index as a persistent file in Hugging Face Spaces, you can use the huggingface_hub.upload_file method. This method allows you to upload a file to a specific repository on the Hugging Face Hub. You will need to provide the path to the serialized index file, the path in the repository where you want to save it, the repository ID, and your Hugging Face token.
6. Access the persistent file: Once the file is uploaded, you can access it from your Streamlit application running on Hugging Face Spaces by using the appropriate URL or path.

Here is an example code snippet that demonstrates these steps:

	python
```
import faiss
from huggingface_hub import upload_file
# Step 1: Import the necessary libraries

# Step 2: Load the FAISS vector store
index = faiss.read_index('path/to/vector_store.faiss')
# Step 3: Perform your operations

# Step 4: Save the FAISS index
serialized_index = faiss.serialize_index(index)

# Step 5: Upload the serialized index
upload_file(serialized_index, path_in_repo='path/in/repo/vector_store.faiss', repo_id='your_repo_id', token='your_token')
# Step 6: Access the persistent file
# You can access the file using the appropriate URL or path in your Streamlit application

```

Please note that you will need to replace 'path/to/vector_store.faiss' with the actual path to your FAISS vector store file, 'path/in/repo/vector_store.faiss' with the desired path in your repository, 'your_repo_id' with the ID of your repository on the Hugging Face Hub, and 'your_token' with your Hugging Face token.
---
Learn more:
1. Save Data from Streamlit Session to Persist Changes to HF Datasets - Datasets - Hugging Face Forums
2. Write to a file in spaces - Spaces - Hugging Face Forums
3. Upload File API for Saving to Persistent Datasets on HF Spaces - Datasets - Hugging Face Forums






How can I load the FAISS index back in from the persistent file


Web-Search
	Poe
	
To load a FAISS index from a persistent file in Python, you can use the faiss.read_index function. This function allows you to read the index from a file and load it back into memory. Here's how you can do it:

	python
```
import faiss
# Specify the path to the persistent file
filename = "path/to/index_file"

# Load the index from the persistent file
index = faiss.read_index(filename)

```

In the code above, you need to replace "path/to/index_file" with the actual path to your persistent file.

Once you have loaded the index, you can use it for similarity search or any other operations supported by FAISS.

---
Learn more:
1. python - How to write a Faiss index to memory? - Stack Overflow
2. Faiss: A library for efficient similarity search - Engineering at Meta
3. Introduction to Facebook AI Similarity Search (Faiss) | Pinecone


This conversation may have been edited by the sharer.


Talk to Web-Search on Poe


---


------------------





- Settings: wide mode as default setting

Zie:
https://docs.streamlit.io/library/advanced-features/app-menu


- File uploader:

https://docs.streamlit.io/library/api-reference/widgets/st.file_uploader


- https://www.datacamp.com/tutorial/streamlit:

st.title(): This function allows you to add the title of the app. 

st.header(): This function is used to set header of a section. 

st.markdown(): This function is used to set a markdown of a section. 

st.subheader(): This function is used to set sub-header of a section. 

st.caption(): This function is used to write caption. 

st.code(): This function is used to set a code. 

st.latex(): This function is used to display mathematical expressions formatted as LaTeX.

st.title ("this is the app title")
st.header("this is the header ")
st.markdown("this is the markdown")
st.subheader("this is the subheader")
st.caption("this is the caption")
st.code("x=2021")
st.latex(r''' a+a r^1+a r^2+a r^3 ''')


- Show the complete history of questions and answers:
...


- Kies de taal waarin geantwoord moet worden:
...
  

- Choose llm temperature using a slider:
Geef de temperature weer in woorden, zoals
deterministisch,
enigszins creatief,
behoorlijk creatief,
heel creatief

...


- Possibility to choose an alternative LLM:
.,,

- Show a set of example questions to the user
VOORBEELDVRAGEN.txt


- Tab pages in streamlit?
st.tabs - Streamlit Docs

https://docs.streamlit.io/library/api-reference/layout/st.tabs



21-03-2024:
TOE TE VOEGEN:

- bewaren van de vragen die users hebben gesteld

- stel bullshit vragen


- Word to PDF:

https://www.ilovepdf.com/word_to_pdf


- ...