File size: 16,781 Bytes
60ae8ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import gradio as gr
import random
import time
import shared
import argparse
import modules.path
import fooocus_version
import modules.html
import modules.async_worker as worker
import modules.constants as constants
import json

from modules.settings import load_settings
from modules.resolutions import get_resolution_string, resolutions
from modules.sdxl_styles import style_keys
from collections.abc import Mapping
from PIL import Image


def generate_clicked(*args):
    yield gr.update(interactive=False), \
        gr.update(visible=True, value=modules.html.make_progress_html(1, 'Processing text encoding ...')), \
        gr.update(visible=True, value=None), \
        gr.update(visible=False), \
        gr.update(), \
        gr.update(value=None), \
        gr.update()

    worker.buffer.append(list(args))
    finished = False

    while not finished:
        time.sleep(0.01)
        if len(worker.outputs) > 0:
            flag, product = worker.outputs.pop(0)
            if flag == 'preview':
                percentage, title, image = product
                yield gr.update(interactive=False), \
                    gr.update(visible=True, value=modules.html.make_progress_html(percentage, title)), \
                    gr.update(visible=True, value=image) if image is not None else gr.update(), \
                    gr.update(visible=False), \
                    gr.update(), \
                    gr.update(), \
                    gr.update()
            if flag == 'results':
                yield gr.update(interactive=True), \
                    gr.update(visible=False), \
                    gr.update(visible=False), \
                    gr.update(visible=True), \
                    gr.update(value=product), \
                    gr.update(), \
                    gr.update()
            if flag == 'metadatas':
                yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(value=product), gr.update(selected=1)
                finished = True
    return


def metadata_to_ctrls(metadata, ctrls):
    if not isinstance(metadata, Mapping):
        return ctrls

    if 'prompt' in metadata:
        ctrls[0] = metadata['prompt']
    if 'negative_prompt' in metadata:
        ctrls[1] = metadata['negative_prompt']
    if 'style' in metadata:
        ctrls[2] = metadata['style']
    if 'performance' in metadata:
        ctrls[3] = metadata['performance']
    if 'width' in metadata and 'height' in metadata:
        ctrls[4] = get_resolution_string(metadata['width'], metadata['height'])
    elif 'resolution' in metadata:
        ctrls[4] = metadata['resolution']
    # image_number
    if 'seed' in metadata:
        ctrls[6] = metadata['seed']
        ctrls[32] = False
    if 'sharpness' in metadata:
        ctrls[7] = metadata['sharpness']
    if 'sampler_name' in metadata:
        ctrls[8] = metadata['sampler_name']
    elif 'sampler' in metadata:
        ctrls[8] = metadata['sampler']
    if 'scheduler' in metadata:
        ctrls[9] = metadata['scheduler']
    if 'steps' in metadata:
        ctrls[10] = metadata['steps']
        if ctrls[10] == constants.STEPS_SPEED:
            ctrls[3] = 'Speed'
        elif ctrls[10] == constants.STEPS_QUALITY:
            ctrls[3] = 'Quality'
        else:
            ctrls[3] = 'Custom'
    if 'switch' in metadata:
        ctrls[11] = round(metadata['switch'] / ctrls[10], 2)
        if ctrls[11] != round(constants.SWITCH_SPEED / constants.STEPS_SPEED, 2):
            ctrls[3] = 'Custom'
    if 'cfg' in metadata:
        ctrls[12] = metadata['cfg']
    if 'base_model' in metadata:
        ctrls[13] = metadata['base_model']
    elif 'base_model_name' in metadata:
        ctrls[13] = metadata['base_model_name']
    if 'refiner_model' in metadata:
        ctrls[14] = metadata['refiner_model']
    elif 'refiner_model_name' in metadata:
        ctrls[14] = metadata['refiner_model_name']
    if 'base_clip_skip' in metadata:
        ctrls[15] = metadata['base_clip_skip']
    if 'refiner_clip_skip' in metadata:
        ctrls[16] = metadata['refiner_clip_skip']
    if 'l1' in metadata:
        ctrls[17] = metadata['l1']
    if 'w1' in metadata:
        ctrls[18] = metadata['w1']
    if 'l2' in metadata:
        ctrls[19] = metadata['l2']
    if 'w2' in metadata:
        ctrls[20] = metadata['w2']
    if 'l3' in metadata:
        ctrls[21] = metadata['l3']
    if 'w3' in metadata:
        ctrls[22] = metadata['w3']
    if 'l4' in metadata:
        ctrls[23] = metadata['l4']
    if 'w4' in metadata:
        ctrls[24] = metadata['w4']
    if 'l5' in metadata:
        ctrls[25] = metadata['l5']
    if 'w5' in metadata:
        ctrls[26] = metadata['w5']
    # save_metadata_json
    # save_metadata_png
    if 'img2img' in metadata:
        ctrls[29] = metadata['img2img']
        if 'start_step' in metadata:
            if ctrls[3] == 'Speed':
                ctrls[30] = round(metadata['start_step'] / constants.STEPS_SPEED, 2)
            elif ctrls[3] == 'Quality':
                ctrls[30] = round(metadata['start_step'] / constants.STEPS_QUALITY, 2)
            else:
                ctrls[30] = round(metadata['start_step'] / ctrls[10], 2)
        if 'denoise' in metadata:
            ctrls[31] = metadata['denoise']
    # seed_random
    return ctrls    


def load_prompt_handler(_file, *args):
    ctrls=list(args)
    path = _file.name
    if path.endswith('.json'):
        with open(path, encoding='utf-8') as json_file:
            try:
                json_obj = json.load(json_file)
                metadata_to_ctrls(json_obj, ctrls)
            except Exception as e:
                print(e)
            finally:
                json_file.close()
    elif path.endswith('.png'):
        with open(path, 'rb') as png_file:
            image = Image.open(png_file)
            png_file.close()
            if 'Comment' in image.info:
                try:
                    metadata = json.loads(image.info['Comment'])
                    metadata_to_ctrls(metadata, ctrls)
                except Exception as e:
                    print(e)
    return ctrls


def load_images_handler(files):
    return gr.update(value=True), list(map(lambda x: x.name, files)), gr.update(selected=0)


def output_to_input_handler(gallery):
    if len(gallery) == 0:
        return gr.update(value=False), [], gr.update()
    else:
        return gr.update(value=True), list(map(lambda x: x['name'], gallery)), gr.update(selected=0)


settings = load_settings()

shared.gradio_root = gr.Blocks(title=fooocus_version.full_version, css=modules.html.css).queue()
with shared.gradio_root:
    with gr.Row():
        with gr.Column():
            progress_window = gr.Image(label='Preview', show_label=True, height=640, visible=False)
            progress_html = gr.HTML(value=modules.html.make_progress_html(32, 'Progress 32%'), visible=False, elem_id='progress-bar', elem_classes='progress-bar')
            with gr.Column() as gallery_holder:
                with gr.Tabs(selected=1) as gallery_tabs:
                    with gr.Tab(label='Input', id=0):
                        input_gallery = gr.Gallery(label='Input', show_label=False, object_fit='contain', height=720, visible=True)
                    with gr.Tab(label='Output', id=1):
                        output_gallery = gr.Gallery(label='Output', show_label=False, object_fit='contain', height=720, visible=True)
            with gr.Row(elem_classes='type_row'):
                with gr.Column(scale=0.85):
                    prompt = gr.Textbox(show_label=False, placeholder='Type prompt here.', container=False, autofocus=True, elem_classes='type_row', lines=1024, value=settings['prompt'])
                with gr.Column(scale=0.15, min_width=0):
                    with gr.Row():
                        img2img_mode = gr.Checkbox(label='Image-2-Image', value=settings['img2img_mode'], elem_classes='type_small_row')
                    with gr.Row():
                        run_button = gr.Button(label='Generate', value='Generate', elem_classes='type_small_row')
            with gr.Row():
                advanced_checkbox = gr.Checkbox(label='Advanced', value=settings['advanced_mode'], container=False)

            def verify_input(img2img, gallery_in, gallery_out):
                if img2img and len(gallery_in) == 0:
                    if len(gallery_out) == 0:
                        gr.Warning('Image-2-Image: disabled (no images available)')
                        return gr.update(value=False), gr.update(), gr.update()
                    else:
                        gr.Info('Image-2-Image: imported output as input')
                        return gr.update(), list(map(lambda x: x['name'], gallery_out)), gr.update()
                else:
                    return gr.update(), gr.update(), gr.update()

        with gr.Column(scale=0.5, visible=settings['advanced_mode']) as advanced_column:
            with gr.Tab(label='Settings'):
                performance = gr.Radio(label='Performance', choices=['Speed', 'Quality', 'Custom'], value=settings['performance'])
                custom_steps = gr.Slider(label='Custom Steps', minimum=10, maximum=200, step=1, value=settings['custom_steps'], visible=settings['performance'] == 'Custom')
                custom_switch = gr.Slider(label='Custom Switch', minimum=0.2, maximum=1.0, step=0.01, value=settings['custom_switch'], visible=settings['performance'] == 'Custom')
                resolution = gr.Dropdown(label='Resolution (width × height)', choices=list(resolutions.keys()), value=settings['resolution'])
                style_selection = gr.Dropdown(label='Style', choices=style_keys, value=settings['style'])
                image_number = gr.Slider(label='Image Number', minimum=1, maximum=32, step=1, value=settings['image_number'])
                negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.", value=settings['negative_prompt'])
                seed_random = gr.Checkbox(label='Random', value=settings['seed_random'])
                image_seed = gr.Number(label='Seed', value=settings['seed'], precision=0, visible=not settings['seed_random'])
                img2img_denoise = gr.Slider(label='Image-2-Image Denoise', minimum=0.2, maximum=1.0, step=0.01, value=settings['img2img_denoise'])
                with gr.Row():
                    load_prompt_button = gr.UploadButton(label='Load Prompt', file_count='single', file_types=['.json', '.png'], elem_classes='type_small_row', min_width=0)
                    load_images_button = gr.UploadButton(label='Load Image(s)', file_count='multiple', file_types=["image"], elem_classes='type_small_row', min_width=0)
                    output_to_input_button = gr.Button(label='Output to Input', value='Output to Input', elem_classes='type_small_row', min_width=0)

                def random_checked(r):
                    return gr.update(visible=not r)

                def refresh_seed(r, s):
                    if r or not isinstance(s, int) or s < 0 or s > 2**63 - 1:
                        return random.randint(0, 2**63 - 1)
                    else:
                        return s

                seed_random.change(random_checked, inputs=[seed_random], outputs=[image_seed])

                def performance_changed(value):
                    return gr.update(visible=value == 'Custom'), gr.update(visible=value == 'Custom')

                performance.change(fn=performance_changed, inputs=[performance], outputs=[custom_steps, custom_switch])
                load_images_button.upload(fn=load_images_handler, inputs=[load_images_button], outputs=[img2img_mode, input_gallery, gallery_tabs])
                output_to_input_button.click(output_to_input_handler, inputs=output_gallery, outputs=[img2img_mode, input_gallery, gallery_tabs])

            with gr.Tab(label='Models'):
                with gr.Row():
                    base_model = gr.Dropdown(label='SDXL Base Model', choices=modules.path.model_filenames, value=settings['base_model'], show_label=True)
                    refiner_model = gr.Dropdown(label='SDXL Refiner', choices=['None'] + modules.path.model_filenames, value=settings['refiner_model'], show_label=True)
                with gr.Accordion(label='LoRAs', open=True):
                    lora_ctrls = []
                    for i in range(5):
                        with gr.Row():
                            lora_model = gr.Dropdown(label=f'SDXL LoRA {i+1}', choices=['None'] + modules.path.lora_filenames, value=settings[f'lora_{i+1}_model'])
                            lora_weight = gr.Slider(label='Weight', minimum=-2, maximum=2, step=0.01, value=settings[f'lora_{i+1}_weight'])
                            lora_ctrls += [lora_model, lora_weight]
                with gr.Row():
                    model_refresh = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button')

            with gr.Tab(label='Advanced'):
                cfg = gr.Slider(label='CFG', minimum=1.0, maximum=20.0, step=0.1, value=settings['cfg'])
                base_clip_skip = gr.Slider(label='Base CLIP Skip', minimum=-10, maximum=-1, step=1, value=settings['base_clip_skip'])
                refiner_clip_skip = gr.Slider(label='Refiner CLIP Skip', minimum=-10, maximum=-1, step=1, value=settings['refiner_clip_skip'])
                sampler_name = gr.Dropdown(label='Sampler', choices=['dpmpp_2m_sde_gpu', 'dpmpp_2m_sde', 'dpmpp_3m_sde_gpu', 'dpmpp_3m_sde',
                    'dpmpp_sde_gpu', 'dpmpp_sde', 'dpmpp_2s_ancestral', 'euler', 'euler_ancestral', 'heun', 'dpm_2', 'dpm_2_ancestral'], value=settings['sampler'])
                scheduler = gr.Dropdown(label='Scheduler', choices=['karras', 'exponential', 'simple', 'ddim_uniform'], value=settings['scheduler'])
                img2img_start_step = gr.Slider(label='Image-2-Image Start Step', minimum=0.0, maximum=0.8, step=0.01, value=settings['img2img_start_step'])
                sharpness = gr.Slider(label='Sampling Sharpness', minimum=0.0, maximum=40.0, step=0.01, value=settings['sharpness'])
                gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/117">\U0001F4D4 Document</a>')

                def model_refresh_clicked():
                    modules.path.update_all_model_names()
                    results = []
                    results += [gr.update(choices=modules.path.model_filenames), gr.update(choices=['None'] + modules.path.model_filenames)]
                    for i in range(5):
                        results += [gr.update(choices=['None'] + modules.path.lora_filenames), gr.update()]
                    return results

                model_refresh.click(model_refresh_clicked, [], [base_model, refiner_model] + lora_ctrls)

            with gr.Tab(label='Metadata'):
                with gr.Row():
                    save_metadata_json = gr.Checkbox(label='Save Metadata in JSON', value=settings['save_metadata_json'])
                    save_metadata_png = gr.Checkbox(label='Save Metadata in PNG', value=settings['save_metadata_png'])
                metadata_viewer = gr.JSON(label='Metadata')

        advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, advanced_column)
        ctrls = [
            prompt, negative_prompt, style_selection,
            performance, resolution, image_number, image_seed, sharpness, sampler_name, scheduler,
            custom_steps, custom_switch, cfg
        ]
        ctrls += [base_model, refiner_model, base_clip_skip, refiner_clip_skip] + lora_ctrls + [save_metadata_json, save_metadata_png, img2img_mode, img2img_start_step, img2img_denoise]
        load_prompt_button.upload(fn=load_prompt_handler, inputs=[load_prompt_button] + ctrls + [seed_random], outputs=ctrls + [seed_random])
        run_button.click(fn=refresh_seed, inputs=[seed_random, image_seed], outputs=image_seed) \
            .then(fn=verify_input, inputs=[img2img_mode, input_gallery, output_gallery], outputs=[img2img_mode, input_gallery, output_gallery]) \
            .then(fn=generate_clicked, inputs=ctrls + [input_gallery], outputs=[run_button, progress_html, progress_window, gallery_holder, output_gallery, metadata_viewer, gallery_tabs])

parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=None, help="Set the listen port.")
parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
parser.add_argument("--listen", type=str, default=None, metavar="IP", nargs="?", const="0.0.0.0", help="Set the listen interface.")
args = parser.parse_args()
shared.gradio_root.launch(inbrowser=True, server_name=args.listen, server_port=args.port, share=args.share)