File size: 9,079 Bytes
b90441b
 
 
cb2adb5
b90441b
cb2adb5
 
 
 
 
 
b90441b
 
 
3a905e4
 
 
 
 
 
 
 
 
 
 
 
 
 
b90441b
 
 
 
3a905e4
 
 
 
 
 
b90441b
 
 
 
 
cb2adb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90441b
cb2adb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import time
from functools import wraps

import matplotlib.pyplot as plt
import streamlit as st
import torch
import torch.nn as nn
from sklearn.metrics import f1_score
from torch.utils.data import Dataset


def execution_time(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        # Define the styling for the execution time text
        styled_text = """
        <style>
        .execution-time {
            font-size: 20px;
            color: #FFFFFF;
            text-shadow: -2px -2px 4px #000000;
        }
        </style>
        """

        # Apply the styling directly before writing the execution time text
        st.markdown(styled_text, unsafe_allow_html=True)

        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        execution_seconds = end_time - start_time

        # Write the styled text for the execution time
        st.markdown(
            f'<div class="execution-time">Model execution time = {execution_seconds:.5f} seconds</div>',
            unsafe_allow_html=True,
        )
        return result

    return wrapper


def create_model_and_tokenizer(model_class, tokenizer_class, pretrained_weights):
    # Создаем объекты для токенизатора и модели
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)
    return model, tokenizer


def train_model(
    DEVICE, epochs, model, train_loader, valid_loader, optimizer, criterion
):
    # Создаем папку для сохранения весов, если она еще не существует
    if not os.path.exists("weights"):
        os.makedirs("weights")

    # Инициализация списков для сохранения значений потерь и точности
    train_losses = []
    train_accuracies = []
    val_losses = []
    val_accuracies = []
    val_f1_scores = []

    best_val_loss = float("inf")

    for epoch in range(epochs):
        model.train()
        train_loss = 0.0
        total = 0
        correct = 0
        for batch in train_loader:
            optimizer.zero_grad()
            input_ids, attention_mask, labels = batch
            input_ids = input_ids.to(DEVICE)
            attention_mask = attention_mask.to(DEVICE)
            labels = labels.to(DEVICE)
            outputs = model(input_ids, attention_mask=attention_mask)
            loss = criterion(outputs, labels.float().unsqueeze(1))
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            preds = torch.round(torch.sigmoid(outputs))
            total += labels.size(0)
            correct += (preds == labels.unsqueeze(1)).sum().item()

        accuracy = correct / total
        avg_train_loss = train_loss / len(train_loader)
        train_losses.append(avg_train_loss)
        train_accuracies.append(accuracy)

        model.eval()
        val_loss = 0.0
        total_preds = []
        total_labels = []
        with torch.no_grad():
            total = 0
            correct = 0
            for batch in valid_loader:
                input_ids, attention_mask, labels = batch
                input_ids = input_ids.to(DEVICE)
                attention_mask = attention_mask.to(DEVICE)
                labels = labels.to(DEVICE)
                outputs = model(input_ids, attention_mask=attention_mask)
                loss = criterion(outputs, labels.float().unsqueeze(1))
                val_loss += loss.item()
                preds = torch.round(torch.sigmoid(outputs))
                total += labels.size(0)
                correct += (preds == labels.unsqueeze(1)).sum().item()
                total_preds.extend(preds.detach().cpu().numpy())
                total_labels.extend(labels.detach().cpu().numpy())

            accuracy = correct / total
            f1 = f1_score(total_labels, total_preds)
            avg_val_loss = val_loss / len(valid_loader)
            val_losses.append(avg_val_loss)
            val_accuracies.append(accuracy)
            val_f1_scores.append(f1)

            # Если это лучшая модель, сохраняем веса
            if avg_val_loss < best_val_loss:
                best_val_loss = avg_val_loss
                torch.save(model.state_dict(), "weights/best_bert_weights.pth")

        print(f"Epoch {epoch+1}")
        print(
            f"Training Loss: {train_losses[-1]:.4f}. Validation Loss: {val_losses[-1]:.4f}"
        )
        print(
            f"Training Accuracy : {train_accuracies[-1]:.4f}. Validation Accuracy : {val_accuracies[-1]:.4f}"
        )
        print(25 * "==")

    return train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores


@execution_time
def predict_sentiment(text, model, tokenizer, DEVICE):
    # Модель должна быть в режиме оценки
    model.eval()

    # Токенизируем текст и конвертируем в тензор
    encoding = tokenizer.encode_plus(
        text, padding="max_length", truncation=True, max_length=512, return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(DEVICE)
    attention_mask = encoding["attention_mask"].to(DEVICE)

    # Прогоняем текст через модель
    with torch.no_grad():
        output = model(input_ids, attention_mask=attention_mask)

    # Преобразуем выход модели в вероятность с помощью сигмоиды
    probability = torch.sigmoid(output).item()

    # Задаем порог
    threshold = 0.5

    # Возвращаем вероятность положительного или отрицательного класса
    if probability >= threshold:
        return 1
        # return f"С вероятностью {probability*100:.2f}% это положительный отзыв"
    else:
        return 0
        # return f"С вероятностью {(1-probability)*100:.2f}% это отрицательный отзыв"


def load_model(model_class, pretrained_weights, weights_path):
    # Создаем экземпляр классификатора
    model = ruBERTClassifier(model_class, pretrained_weights)

    # Загружаем веса
    model.load_state_dict(torch.load(weights_path, map_location="cpu"))

    return model


def plot_metrics(
    train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores
):
    epochs = range(1, len(train_losses) + 1)

    fig, axs = plt.subplots(1, 2, figsize=(15, 5))

    # Первый подграфик для потерь
    axs[0].plot(epochs, train_losses, "r--", label="Training Loss")
    axs[0].plot(epochs, val_losses, "b--", linewidth=2, label="Validation Loss")
    axs[0].set_title("Training and Validation Loss")
    axs[0].set_xlabel("Epochs")
    axs[0].set_ylabel("Loss")
    axs[0].legend()

    # Второй подграфик для точности и F1-оценки
    axs[1].plot(epochs, train_accuracies, "r-", linewidth=2, label="Training Accuracy")
    axs[1].plot(epochs, val_accuracies, "b-", linewidth=2, label="Validation Accuracy")
    axs[1].plot(epochs, val_f1_scores, "g-", linewidth=2, label="Validation F1 Score")
    axs[1].set_title("Training and Validation Accuracy and F1 Score")
    axs[1].set_xlabel("Epochs")
    axs[1].set_ylabel("Metric Value")
    axs[1].legend()

    plt.tight_layout()
    plt.savefig("metrics_plot.png")  # Сохраняем рисунок в файл
    plt.show()


class TextClassificationDataset(Dataset):
    def __init__(self, texts, labels, tokenizer):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]
        encoding = self.tokenizer.encode_plus(
            text,
            padding="max_length",
            truncation=True,
            max_length=512,
            return_tensors="pt",
        )
        return (
            encoding["input_ids"].squeeze(),
            encoding["attention_mask"].squeeze(),
            torch.tensor(label),
        )


class ruBERTClassifier(nn.Module):
    def __init__(self, model_class, pretrained_weights):
        super().__init__()
        self.bert = model_class.from_pretrained(pretrained_weights)
        # Замораживаем все параметры
        for param in self.bert.parameters():
            param.requires_grad = False

        # Размораживаем слой BertPooler
        for param in self.bert.pooler.parameters():
            param.requires_grad = True

        self.linear = nn.Sequential(
            nn.Linear(312, 256),
            nn.ReLU(),
            nn.Dropout(),
            nn.Linear(256, 1),
        )

    def forward(self, x, attention_mask):
        bert_out = self.bert(x, attention_mask=attention_mask)[0][:, 0, :]
        out = self.linear(bert_out)
        return out