File size: 9,079 Bytes
b90441b cb2adb5 b90441b cb2adb5 b90441b 3a905e4 b90441b 3a905e4 b90441b cb2adb5 b90441b cb2adb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import time
from functools import wraps
import matplotlib.pyplot as plt
import streamlit as st
import torch
import torch.nn as nn
from sklearn.metrics import f1_score
from torch.utils.data import Dataset
def execution_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Define the styling for the execution time text
styled_text = """
<style>
.execution-time {
font-size: 20px;
color: #FFFFFF;
text-shadow: -2px -2px 4px #000000;
}
</style>
"""
# Apply the styling directly before writing the execution time text
st.markdown(styled_text, unsafe_allow_html=True)
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_seconds = end_time - start_time
# Write the styled text for the execution time
st.markdown(
f'<div class="execution-time">Model execution time = {execution_seconds:.5f} seconds</div>',
unsafe_allow_html=True,
)
return result
return wrapper
def create_model_and_tokenizer(model_class, tokenizer_class, pretrained_weights):
# Создаем объекты для токенизатора и модели
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
model = model_class.from_pretrained(pretrained_weights)
return model, tokenizer
def train_model(
DEVICE, epochs, model, train_loader, valid_loader, optimizer, criterion
):
# Создаем папку для сохранения весов, если она еще не существует
if not os.path.exists("weights"):
os.makedirs("weights")
# Инициализация списков для сохранения значений потерь и точности
train_losses = []
train_accuracies = []
val_losses = []
val_accuracies = []
val_f1_scores = []
best_val_loss = float("inf")
for epoch in range(epochs):
model.train()
train_loss = 0.0
total = 0
correct = 0
for batch in train_loader:
optimizer.zero_grad()
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(DEVICE)
attention_mask = attention_mask.to(DEVICE)
labels = labels.to(DEVICE)
outputs = model(input_ids, attention_mask=attention_mask)
loss = criterion(outputs, labels.float().unsqueeze(1))
loss.backward()
optimizer.step()
train_loss += loss.item()
preds = torch.round(torch.sigmoid(outputs))
total += labels.size(0)
correct += (preds == labels.unsqueeze(1)).sum().item()
accuracy = correct / total
avg_train_loss = train_loss / len(train_loader)
train_losses.append(avg_train_loss)
train_accuracies.append(accuracy)
model.eval()
val_loss = 0.0
total_preds = []
total_labels = []
with torch.no_grad():
total = 0
correct = 0
for batch in valid_loader:
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(DEVICE)
attention_mask = attention_mask.to(DEVICE)
labels = labels.to(DEVICE)
outputs = model(input_ids, attention_mask=attention_mask)
loss = criterion(outputs, labels.float().unsqueeze(1))
val_loss += loss.item()
preds = torch.round(torch.sigmoid(outputs))
total += labels.size(0)
correct += (preds == labels.unsqueeze(1)).sum().item()
total_preds.extend(preds.detach().cpu().numpy())
total_labels.extend(labels.detach().cpu().numpy())
accuracy = correct / total
f1 = f1_score(total_labels, total_preds)
avg_val_loss = val_loss / len(valid_loader)
val_losses.append(avg_val_loss)
val_accuracies.append(accuracy)
val_f1_scores.append(f1)
# Если это лучшая модель, сохраняем веса
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save(model.state_dict(), "weights/best_bert_weights.pth")
print(f"Epoch {epoch+1}")
print(
f"Training Loss: {train_losses[-1]:.4f}. Validation Loss: {val_losses[-1]:.4f}"
)
print(
f"Training Accuracy : {train_accuracies[-1]:.4f}. Validation Accuracy : {val_accuracies[-1]:.4f}"
)
print(25 * "==")
return train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores
@execution_time
def predict_sentiment(text, model, tokenizer, DEVICE):
# Модель должна быть в режиме оценки
model.eval()
# Токенизируем текст и конвертируем в тензор
encoding = tokenizer.encode_plus(
text, padding="max_length", truncation=True, max_length=512, return_tensors="pt"
)
input_ids = encoding["input_ids"].to(DEVICE)
attention_mask = encoding["attention_mask"].to(DEVICE)
# Прогоняем текст через модель
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)
# Преобразуем выход модели в вероятность с помощью сигмоиды
probability = torch.sigmoid(output).item()
# Задаем порог
threshold = 0.5
# Возвращаем вероятность положительного или отрицательного класса
if probability >= threshold:
return 1
# return f"С вероятностью {probability*100:.2f}% это положительный отзыв"
else:
return 0
# return f"С вероятностью {(1-probability)*100:.2f}% это отрицательный отзыв"
def load_model(model_class, pretrained_weights, weights_path):
# Создаем экземпляр классификатора
model = ruBERTClassifier(model_class, pretrained_weights)
# Загружаем веса
model.load_state_dict(torch.load(weights_path, map_location="cpu"))
return model
def plot_metrics(
train_losses, train_accuracies, val_losses, val_accuracies, val_f1_scores
):
epochs = range(1, len(train_losses) + 1)
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
# Первый подграфик для потерь
axs[0].plot(epochs, train_losses, "r--", label="Training Loss")
axs[0].plot(epochs, val_losses, "b--", linewidth=2, label="Validation Loss")
axs[0].set_title("Training and Validation Loss")
axs[0].set_xlabel("Epochs")
axs[0].set_ylabel("Loss")
axs[0].legend()
# Второй подграфик для точности и F1-оценки
axs[1].plot(epochs, train_accuracies, "r-", linewidth=2, label="Training Accuracy")
axs[1].plot(epochs, val_accuracies, "b-", linewidth=2, label="Validation Accuracy")
axs[1].plot(epochs, val_f1_scores, "g-", linewidth=2, label="Validation F1 Score")
axs[1].set_title("Training and Validation Accuracy and F1 Score")
axs[1].set_xlabel("Epochs")
axs[1].set_ylabel("Metric Value")
axs[1].legend()
plt.tight_layout()
plt.savefig("metrics_plot.png") # Сохраняем рисунок в файл
plt.show()
class TextClassificationDataset(Dataset):
def __init__(self, texts, labels, tokenizer):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
encoding = self.tokenizer.encode_plus(
text,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt",
)
return (
encoding["input_ids"].squeeze(),
encoding["attention_mask"].squeeze(),
torch.tensor(label),
)
class ruBERTClassifier(nn.Module):
def __init__(self, model_class, pretrained_weights):
super().__init__()
self.bert = model_class.from_pretrained(pretrained_weights)
# Замораживаем все параметры
for param in self.bert.parameters():
param.requires_grad = False
# Размораживаем слой BertPooler
for param in self.bert.pooler.parameters():
param.requires_grad = True
self.linear = nn.Sequential(
nn.Linear(312, 256),
nn.ReLU(),
nn.Dropout(),
nn.Linear(256, 1),
)
def forward(self, x, attention_mask):
bert_out = self.bert(x, attention_mask=attention_mask)[0][:, 0, :]
out = self.linear(bert_out)
return out
|