Spaces:
Running
on
L4
Running
on
L4
File size: 30,035 Bytes
5ac1897 00b3331 5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
from lib.kits.basic import *
from lib.utils.vis import Wis3D
from lib.utils.vis.py_renderer import render_mesh_overlay_img
from lib.utils.data import to_tensor
from lib.utils.media import draw_kp2d_on_img, annotate_img, splice_img
from lib.utils.camera import perspective_projection
from lib.body_models.abstract_skeletons import Skeleton_OpenPose25
from lib.modeling.losses import *
from lib.modeling.networks.discriminators import HSMRDiscriminator
from lib.platform.config_utils import get_PM_info_dict
def build_inference_pipeline(
model_root: Union[Path, str],
ckpt_fn : Optional[Union[Path, str]] = None,
tuned_bcb : bool = True,
device : str = 'cpu',
):
# 1.1. Load the config file.
if isinstance(model_root, str):
model_root = Path(model_root)
cfg_path = model_root / '.hydra' / 'config.yaml'
cfg = OmegaConf.load(cfg_path)
# 1.2. Override PM info dict.
PM_overrides = get_PM_info_dict()._pm_
cfg._pm_ = PM_overrides
get_logger(brief=True).info(f'Building inference pipeline of {cfg.exp_name}')
# 2.1. Instantiate the pipeline.
init_bcb = not tuned_bcb
pipeline = instantiate(cfg.pipeline, init_backbone=init_bcb, _recursive_=False)
pipeline.set_data_adaption(data_module_name='IMG_PATCHES')
# 2.2. Load the checkpoint.
if ckpt_fn is None:
ckpt_fn = model_root / 'checkpoints' / 'hsmr.ckpt'
pipeline.load_state_dict(torch.load(ckpt_fn, map_location=device)['state_dict'])
get_logger(brief=True).info(f'Load checkpoint from {ckpt_fn}.')
pipeline.eval()
return pipeline.to(device)
class HSMRPipeline(pl.LightningModule):
def __init__(self, cfg:DictConfig, name:str, init_backbone=True):
super(HSMRPipeline, self).__init__()
self.name = name
self.skel_model = instantiate(cfg.SKEL)
self.backbone = instantiate(cfg.backbone)
self.head = instantiate(cfg.head)
self.cfg = cfg
if init_backbone:
# For inference mode with tuned backbone checkpoints, we don't need to initialize the backbone here.
self._init_backbone()
# Loss layers.
self.kp_3d_loss = Keypoint3DLoss(loss_type='l1')
self.kp_2d_loss = Keypoint2DLoss(loss_type='l1')
self.params_loss = ParameterLoss()
# Discriminator.
self.enable_disc = self.cfg.loss_weights.get('adversarial', 0) > 0
if self.enable_disc:
self.discriminator = HSMRDiscriminator()
get_logger().warning(f'Discriminator enabled, the global_steps will be doubled. Use the checkpoints carefully.')
else:
self.discriminator = None
self.cfg.loss_weights.pop('adversarial', None) # pop the adversarial term if not enabled
# Manually control the optimization since we have an adversarial process.
self.automatic_optimization = False
self.set_data_adaption()
# For visualization debug.
if False:
self.wis3d = Wis3D(seq_name=PM.cfg.exp_name)
else:
self.wis3d = None
def set_data_adaption(self, data_module_name:Optional[str]=None):
if data_module_name is None:
# get_logger().warning('Data adapter schema is not defined. The input will be regarded as image patches.')
self.adapt_batch = self._adapt_img_inference
elif data_module_name == 'IMG_PATCHES':
self.adapt_batch = self._adapt_img_inference
elif data_module_name.startswith('SKEL_HSMR_V1'):
self.adapt_batch = self._adapt_hsmr_v1
else:
raise ValueError(f'Unknown data module: {data_module_name}')
def print_summary(self, max_depth=1):
from pytorch_lightning.utilities.model_summary.model_summary import ModelSummary
print(ModelSummary(self, max_depth=max_depth))
def configure_optimizers(self):
optimizers = []
params_main = filter(lambda p: p.requires_grad, self._params_main())
optimizer_main = instantiate(self.cfg.optimizer, params=params_main)
optimizers.append(optimizer_main)
if len(self._params_disc()) > 0:
params_disc = filter(lambda p: p.requires_grad, self._params_disc())
optimizer_disc = instantiate(self.cfg.optimizer, params=params_disc)
optimizers.append(optimizer_disc)
return optimizers
def training_step(self, raw_batch, batch_idx):
with PM.time_monitor('training_step'):
return self._training_step(raw_batch, batch_idx)
def _training_step(self, raw_batch, batch_idx):
# GPU_monitor = GPUMonitor()
# GPU_monitor.snapshot('HSMR training start')
batch = self.adapt_batch(raw_batch['img_ds'])
# GPU_monitor.snapshot('HSMR adapt batch')
# Get the optimizer.
optimizers = self.optimizers(use_pl_optimizer=True)
if isinstance(optimizers, List):
optimizer_main, optimizer_disc = optimizers
else:
optimizer_main = optimizers
# GPU_monitor.snapshot('HSMR get optimizer')
# 1. Main parts forward pass.
with PM.time_monitor('forward_step'):
img_patch = to_tensor(batch['img_patch'], self.device) # (B, C, H, W)
B = len(img_patch)
outputs = self.forward_step(img_patch) # {...}
# GPU_monitor.snapshot('HSMR forward')
pd_skel_params = HSMRPipeline._adapt_skel_params(outputs['pd_params'])
# GPU_monitor.snapshot('HSMR adapt SKEL params')
# 2. [Optional] Discriminator forward pass in main training step.
if self.enable_disc:
with PM.time_monitor('disc_forward'):
pd_poses_mat, _ = self.skel_model.pose_params_to_rot(pd_skel_params['poses']) # (B, J=24, 3, 3)
pd_poses_body_mat = pd_poses_mat[:, 1:, :, :] # (B, J=23, 3, 3)
pd_betas = pd_skel_params['betas'] # (B, 10)
disc_out = self.discriminator(
poses_body = pd_poses_body_mat, # (B, J=23, 3, 3)
betas = pd_betas, # (B, 10)
)
else:
disc_out = None
# 3. Prepare the secondary products
with PM.time_monitor('Secondary Products Preparation'):
# 3.1. Body model outputs.
with PM.time_monitor('SKEL Forward'):
skel_outputs = self.skel_model(**pd_skel_params, skelmesh=False)
pd_kp3d = skel_outputs.joints # (B, Q=44, 3)
pd_skin = skel_outputs.skin_verts # (B, V=6890, 3)
# 3.2. Reproject the 3D joints to 2D plain.
with PM.time_monitor('Reprojection'):
pd_kp2d = perspective_projection(
points = pd_kp3d, # (B, K=Q=44, 3)
translation = outputs['pd_cam_t'], # (B, 3)
focal_length = outputs['focal_length'] / self.cfg.policy.img_patch_size, # (B, 2)
) # (B, 44, 2)
# 3.3. Extract G.T. from inputs.
gt_kp2d_with_conf = batch['kp2d'].clone() # (B, 44, 3)
gt_kp3d_with_conf = batch['kp3d'].clone() # (B, 44, 4)
# 3.4. Extract G.T. skin mesh only for visualization.
gt_skel_params = HSMRPipeline._adapt_skel_params(batch['gt_params']) # {poses, betas}
gt_skel_params = {k: v[:self.cfg.logger.samples_per_record] for k, v in gt_skel_params.items()}
skel_outputs = self.skel_model(**gt_skel_params, skelmesh=False)
gt_skin = skel_outputs.skin_verts # (B', V=6890, 3)
gt_valid_body = batch['has_gt_params']['poses_body'][:self.cfg.logger.samples_per_record] # {poses_orient, poses_body, betas}
gt_valid_orient = batch['has_gt_params']['poses_orient'][:self.cfg.logger.samples_per_record] # {poses_orient, poses_body, betas}
gt_valid_betas = batch['has_gt_params']['betas'][:self.cfg.logger.samples_per_record] # {poses_orient, poses_body, betas}
gt_valid = torch.logical_and(torch.logical_and(gt_valid_body, gt_valid_orient), gt_valid_betas)
# GPU_monitor.snapshot('HSMR secondary products')
# 4. Compute losses.
with PM.time_monitor('Compute Loss'):
loss_main, losses_main = self._compute_losses_main(
self.cfg.loss_weights,
pd_kp3d, # (B, 44, 3)
gt_kp3d_with_conf, # (B, 44, 4)
pd_kp2d, # (B, 44, 2)
gt_kp2d_with_conf, # (B, 44, 3)
outputs['pd_params'], # {'poses_orient':..., 'poses_body':..., 'betas':...}
batch['gt_params'], # {'poses_orient':..., 'poses_body':..., 'betas':...}
batch['has_gt_params'],
disc_out,
)
# GPU_monitor.snapshot('HSMR compute losses')
if torch.isnan(loss_main):
get_logger().error(f'NaN detected in loss computation. Losses: {losses}')
# 5. Main parts backward pass.
with PM.time_monitor('Backward Step'):
optimizer_main.zero_grad()
self.manual_backward(loss_main)
optimizer_main.step()
# GPU_monitor.snapshot('HSMR backwards')
# 6. [Optional] Discriminator training part.
if self.enable_disc:
with PM.time_monitor('Train Discriminator'):
losses_disc = self._train_discriminator(
mocap_batch = raw_batch['mocap_ds'],
pd_poses_body_mat = pd_poses_body_mat,
pd_betas = pd_betas,
optimizer = optimizer_disc,
)
else:
losses_disc = {}
# 7. Logging.
with PM.time_monitor('Tensorboard Logging'):
vis_data = {
'img_patch' : to_numpy(img_patch[:self.cfg.logger.samples_per_record]).transpose((0, 2, 3, 1)).copy(),
'pd_kp2d' : pd_kp2d[:self.cfg.logger.samples_per_record].clone(),
'pd_kp3d' : pd_kp3d[:self.cfg.logger.samples_per_record].clone(),
'gt_kp2d_with_conf' : gt_kp2d_with_conf[:self.cfg.logger.samples_per_record].clone(),
'gt_kp3d_with_conf' : gt_kp3d_with_conf[:self.cfg.logger.samples_per_record].clone(),
'pd_skin' : pd_skin[:self.cfg.logger.samples_per_record].clone(),
'gt_skin' : gt_skin.clone(),
'gt_skin_valid' : gt_valid,
'cam_t' : outputs['pd_cam_t'][:self.cfg.logger.samples_per_record].clone(),
'img_key' : batch['__key__'][:self.cfg.logger.samples_per_record],
}
self._tb_log(losses_main=losses_main, losses_disc=losses_disc, vis_data=vis_data)
# GPU_monitor.snapshot('HSMR logging')
self.log('_/loss_main', losses_main['weighted_sum'], on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=B)
# GPU_monitor.report_all()
return outputs
def forward(self, batch):
'''
### Returns
- outputs: Dict
- pd_kp3d: torch.Tensor, shape (B, Q=44, 3)
- pd_kp2d: torch.Tensor, shape (B, Q=44, 2)
- pred_keypoints_2d: torch.Tensor, shape (B, Q=44, 2)
- pred_keypoints_3d: torch.Tensor, shape (B, Q=44, 3)
- pd_params: Dict
- poses: torch.Tensor, shape (B, 46)
- betas: torch.Tensor, shape (B, 10)
- pd_cam: torch.Tensor, shape (B, 3)
- pd_cam_t: torch.Tensor, shape (B, 3)
- focal_length: torch.Tensor, shape (B, 2)
'''
batch = self.adapt_batch(batch)
# 1. Main parts forward pass.
img_patch = to_tensor(batch['img_patch'], self.device) # (B, C, H, W)
outputs = self.forward_step(img_patch) # {...}
# 2. Prepare the secondary products
# 2.1. Body model outputs.
pd_skel_params = HSMRPipeline._adapt_skel_params(outputs['pd_params'])
skel_outputs = self.skel_model(**pd_skel_params, skelmesh=False)
pd_kp3d = skel_outputs.joints # (B, Q=44, 3)
pd_skin_verts = skel_outputs.skin_verts.detach().cpu().clone() # (B, V=6890, 3)
# 2.2. Reproject the 3D joints to 2D plain.
pd_kp2d = perspective_projection(
points = to_tensor(pd_kp3d, device=self.device), # (B, K=Q=44, 3)
translation = to_tensor(outputs['pd_cam_t'], device=self.device), # (B, 3)
focal_length = to_tensor(outputs['focal_length'], device=self.device) / self.cfg.policy.img_patch_size, # (B, 2)
)
outputs['pd_kp3d'] = pd_kp3d
outputs['pd_kp2d'] = pd_kp2d
outputs['pred_keypoints_2d'] = pd_kp2d # adapt HMR2.0's script
outputs['pred_keypoints_3d'] = pd_kp3d # adapt HMR2.0's script
outputs['pd_params'] = pd_skel_params
outputs['pd_skin_verts'] = pd_skin_verts
return outputs
def forward_step(self, x:torch.Tensor):
'''
Run an inference step on the model.
### Args
- x: torch.Tensor, shape (B, C, H, W)
- The input image patch.
### Returns
- outputs: Dict
- 'pd_cam': torch.Tensor, shape (B, 3)
- The predicted camera parameters.
- 'pd_params': Dict
- The predicted body model parameters.
- 'focal_length': float
'''
# GPU_monitor = GPUMonitor()
B = len(x)
# 1. Extract features from image.
# The input size is 256*256, but ViT needs 256*192. TODO: make this more elegant.
with PM.time_monitor('Backbone Forward'):
feats = self.backbone(x[:, :, :, 32:-32])
# GPU_monitor.snapshot('HSMR forward backbone')
# 2. Run the head to predict the body model parameters.
with PM.time_monitor('Predict Head Forward'):
pd_params, pd_cam = self.head(feats)
# GPU_monitor.snapshot('HSMR forward head')
# 3. Transform the camera parameters to camera translation.
focal_length = self.cfg.policy.focal_length * torch.ones(B, 2, device=self.device, dtype=pd_cam.dtype) # (B, 2)
pd_cam_t = torch.stack([
pd_cam[:, 1],
pd_cam[:, 2],
2 * focal_length[:, 0] / (self.cfg.policy.img_patch_size * pd_cam[:, 0] + 1e-9)
], dim=-1) # (B, 3)
# 4. Store the results.
outputs = {
'pd_cam' : pd_cam,
'pd_cam_t' : pd_cam_t,
'pd_params' : pd_params,
# 'pd_params' : {k: v.clone() for k, v in pd_params.items()},
'focal_length' : focal_length, # (B, 2)
}
# GPU_monitor.report_all()
return outputs
# ========== Internal Functions ==========
def _params_main(self):
return list(self.head.parameters()) + list(self.backbone.parameters())
def _params_disc(self):
if self.discriminator is None:
return []
else:
return list(self.discriminator.parameters())
@staticmethod
def _adapt_skel_params(params:Dict):
''' Change the parameters formed like [pose_orient, pose_body, betas, trans] to [poses, betas, trans]. '''
adapted_params = {}
if 'poses' in params.keys():
adapted_params['poses'] = params['poses']
elif 'poses_orient' in params.keys() and 'poses_body' in params.keys():
poses_orient = params['poses_orient'] # (B, 3)
poses_body = params['poses_body'] # (B, 43)
adapted_params['poses'] = torch.cat([poses_orient, poses_body], dim=1) # (B, 46)
else:
raise ValueError(f'Cannot find the poses parameters among {list(params.keys())}.')
if 'betas' in params.keys():
adapted_params['betas'] = params['betas'] # (B, 10)
else:
raise ValueError(f'Cannot find the betas parameters among {list(params.keys())}.')
return adapted_params
def _init_backbone(self):
# 1. Loading the backbone weights.
get_logger().info(f'Loading backbone weights from {self.cfg.backbone_ckpt}')
state_dict = torch.load(self.cfg.backbone_ckpt, map_location='cpu')['state_dict']
if 'backbone.cls_token' in state_dict.keys():
state_dict = {k: v for k, v in state_dict.items() if 'backbone' in k and 'cls_token' not in k}
state_dict = {k.replace('backbone.', ''): v for k, v in state_dict.items()}
missing, unexpected = self.backbone.load_state_dict(state_dict)
if len(missing) > 0:
get_logger().warning(f'Missing keys in backbone: {missing}')
if len(unexpected) > 0:
get_logger().warning(f'Unexpected keys in backbone: {unexpected}')
# 2. Freeze the backbone if needed.
if self.cfg.get('freeze_backbone', False):
self.backbone.eval()
self.backbone.requires_grad_(False)
def _compute_losses_main(
self,
loss_weights : Dict,
pd_kp3d : torch.Tensor,
gt_kp3d : torch.Tensor,
pd_kp2d : torch.Tensor,
gt_kp2d : torch.Tensor,
pd_params : Dict,
gt_params : Dict,
has_params : Dict,
disc_out : Optional[torch.Tensor]=None,
*args, **kwargs,
) -> Tuple[torch.Tensor, Dict]:
''' Compute the weighted losses according to the config file. '''
# 1. Preparation.
with PM.time_monitor('Preparation'):
B = len(pd_kp3d)
gt_skel_params = HSMRPipeline._adapt_skel_params(gt_params) # {poses, betas}
pd_skel_params = HSMRPipeline._adapt_skel_params(pd_params) # {poses, betas}
gt_betas = gt_skel_params['betas'].reshape(-1, 10)
pd_betas = pd_skel_params['betas'].reshape(-1, 10)
gt_poses = gt_skel_params['poses'].reshape(-1, 46)
pd_poses = pd_skel_params['poses'].reshape(-1, 46)
# 2. Keypoints losses.
with PM.time_monitor('kp2d & kp3d Loss'):
kp2d_loss = self.kp_2d_loss(pd_kp2d, gt_kp2d) / B
kp3d_loss = self.kp_3d_loss(pd_kp3d, gt_kp3d) / B
# 3. Prior losses.
with PM.time_monitor('Prior Loss'):
prior_loss = compute_poses_angle_prior_loss(pd_poses).mean() # (,)
# 4. Parameters losses.
if self.cfg.sp_poses_repr == 'rotation_matrix':
with PM.time_monitor('q2mat'):
gt_poses_mat, _ = self.skel_model.pose_params_to_rot(gt_poses) # (B, J=24, 3, 3)
pd_poses_mat, _ = self.skel_model.pose_params_to_rot(pd_poses) # (B, J=24, 3, 3)
gt_poses = gt_poses_mat.reshape(-1, 24*3*3) # (B, 24*3*3)
pd_poses = pd_poses_mat.reshape(-1, 24*3*3) # (B, 24*3*3)
with PM.time_monitor('Parameters Loss'):
poses_orient_loss = self.params_loss(pd_poses[:, :9], gt_poses[:, :9], has_params['poses_orient']) / B
poses_body_loss = self.params_loss(pd_poses[:, 9:], gt_poses[:, 9:], has_params['poses_body']) / B
betas_loss = self.params_loss(pd_betas, gt_betas, has_params['betas']) / B
# 5. Collect main losses.
with PM.time_monitor('Accumulate'):
losses = {
'kp3d' : kp3d_loss, # (,)
'kp2d' : kp2d_loss, # (,)
'prior' : prior_loss, # (,)
'poses_orient' : poses_orient_loss, # (,)
'poses_body' : poses_body_loss, # (,)
'betas' : betas_loss, # (,)
}
# 6. Consider adversarial loss.
if disc_out is not None:
with PM.time_monitor('Adversarial Loss'):
adversarial_loss = ((disc_out - 1.0) ** 2).sum() / B # (,)
losses['adversarial'] = adversarial_loss
with PM.time_monitor('Accumulate'):
loss = torch.tensor(0., device=self.device)
for k, v in losses.items():
loss += v * loss_weights[k]
losses = {k: v.item() for k, v in losses.items()}
losses['weighted_sum'] = loss.item()
return loss, losses
def _train_discriminator(self, mocap_batch, pd_poses_body_mat, pd_betas, optimizer):
'''
Train the discriminator using the regressed body model parameters and the realistic MoCap data.
### Args
- mocap_batch: Dict
- 'poses_body': torch.Tensor, shape (B, 43)
- 'betas': torch.Tensor, shape (B, 10)
- pd_poses_body_mat: torch.Tensor, shape (B, J=23, 3, 3)
- pd_betas: torch.Tensor, shape (B, 10)
- optimizer: torch.optim.Optimizer
### Returns
- losses: Dict
- 'pd_disc': float
- 'mc_disc': float
'''
pd_B = len(pd_poses_body_mat)
mc_B = len(mocap_batch['poses_body'])
get_logger().warning(f'pd_B: {pd_B} != mc_B: {mc_B}')
# 1. Extract the realistic 3D MoCap label.
mc_poses_body = mocap_batch['poses_body'] # (B, 43)
padding_zeros = mc_poses_body.new_zeros(mc_B, 3) # (B, 3)
mc_poses = torch.cat([padding_zeros, mc_poses_body], dim=1) # (B, 46)
mc_poses_mat, _ = self.skel_model.pose_params_to_rot(mc_poses) # (B, J=24, 3, 3)
mc_poses_body_mat = mc_poses_mat[:, 1:, :, :] # (B, J=23, 3, 3)
mc_betas = mocap_batch['betas'] # (B, 10)
# 2. Forward pass.
# Discriminator forward pass for the predicted data.
pd_disc_out = self.discriminator(pd_poses_body_mat.detach(), pd_betas.detach())
pd_disc_loss = ((pd_disc_out - 0.0) ** 2).sum() / pd_B # (,)
# Discriminator forward pass for the realistic MoCap data.
mc_disc_out = self.discriminator(mc_poses_body_mat, mc_betas)
mc_disc_loss = ((mc_disc_out - 1.0) ** 2).sum() / pd_B # (,) TODO: This 'pd_B' is from HMR2, not sure if it's a bug.
# 3. Backward pass.
disc_loss = self.cfg.loss_weights.adversarial * (pd_disc_loss + mc_disc_loss)
optimizer.zero_grad()
self.manual_backward(disc_loss)
optimizer.step()
return {
'pd_disc': pd_disc_loss.item(),
'mc_disc': mc_disc_loss.item(),
}
@rank_zero_only
def _tb_log(self, losses_main:Dict, losses_disc:Dict, vis_data:Dict, mode:str='train'):
''' Write the logging information to the TensorBoard. '''
if self.logger is None:
return
if self.global_step != 1 and self.global_step % self.cfg.logger.interval != 0:
return
# 1. Losses.
summary_writer = self.logger.experiment
for loss_name, loss_val in losses_main.items():
summary_writer.add_scalar(f'{mode}/losses_main/{loss_name}', loss_val, self.global_step)
for loss_name, loss_val in losses_disc.items():
summary_writer.add_scalar(f'{mode}/losses_disc/{loss_name}', loss_val, self.global_step)
# 2. Visualization.
try:
pelvis_id = 39
# 2.1. Visualize 3D information.
self.wis3d.add_motion_mesh(
verts = vis_data['pd_skin'] - vis_data['pd_kp3d'][:, pelvis_id:pelvis_id+1], # center the mesh
faces = self.skel_model.skin_f,
name = 'pd_skin',
)
self.wis3d.add_motion_mesh(
verts = vis_data['gt_skin'] - vis_data['gt_kp3d_with_conf'][:, pelvis_id:pelvis_id+1, :3], # center the mesh
faces = self.skel_model.skin_f,
name = 'gt_skin',
)
self.wis3d.add_motion_skel(
joints = vis_data['pd_kp3d'] - vis_data['pd_kp3d'][:, pelvis_id:pelvis_id+1],
bones = Skeleton_OpenPose25.bones,
colors = Skeleton_OpenPose25.bone_colors,
name = 'pd_kp3d',
)
aligned_gt_kp3d = vis_data['gt_kp3d_with_conf']
aligned_gt_kp3d[..., :3] -= vis_data['gt_kp3d_with_conf'][:, pelvis_id:pelvis_id+1, :3]
self.wis3d.add_motion_skel(
joints = aligned_gt_kp3d,
bones = Skeleton_OpenPose25.bones,
colors = Skeleton_OpenPose25.bone_colors,
name = 'gt_kp3d',
)
except Exception as e:
get_logger().error(f'Failed to visualize the current performance on wis3d: {e}')
try:
# 2.2. Visualize 2D information.
if vis_data['img_patch'] is not None:
# Overlay the skin mesh of the results on the original image.
imgs_spliced = []
for i, img_patch in enumerate(vis_data['img_patch']):
# TODO: make this more elegant.
img_mean = to_numpy(OmegaConf.to_container(self.cfg.policy.img_mean))[None, None] # (1, 1, 3)
img_std = to_numpy(OmegaConf.to_container(self.cfg.policy.img_std))[None, None] # (1, 1, 3)
img_patch = ((img_mean + img_patch * img_std) * 255).astype(np.uint8)
img_patch_raw = annotate_img(img_patch, 'raw')
img_with_mesh = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = vis_data['pd_skin'][i].float(),
K4 = [self.cfg.policy.focal_length, self.cfg.policy.focal_length, 128, 128],
img = img_patch,
Rt = [torch.eye(3).float(), vis_data['cam_t'][i].float()],
mesh_color = 'pink',
)
img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')
img_with_gt_mesh = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = vis_data['gt_skin'][i].float(),
K4 = [self.cfg.policy.focal_length, self.cfg.policy.focal_length, 128, 128],
img = img_patch,
Rt = [torch.eye(3).float(), vis_data['cam_t'][i].float()],
mesh_color = 'pink',
)
valid = 'valid' if vis_data['gt_skin_valid'][i] else 'invalid'
img_with_gt_mesh = annotate_img(img_with_gt_mesh, f'gt_mesh_{valid}')
img_with_gt = annotate_img(img_patch, 'gt_kp2d')
gt_kp2d_with_conf = vis_data['gt_kp2d_with_conf'][i]
gt_kp2d_with_conf[:, :2] = (gt_kp2d_with_conf[:, :2] + 0.5) * self.cfg.policy.img_patch_size
img_with_gt = draw_kp2d_on_img(
img_with_gt,
gt_kp2d_with_conf,
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
img_with_pd = annotate_img(img_patch, 'pd_kp2d')
pd_kp2d_vis = vis_data['pd_kp2d'][i]
pd_kp2d_vis = (pd_kp2d_vis + 0.5) * self.cfg.policy.img_patch_size
img_with_pd = draw_kp2d_on_img(
img_with_pd,
(vis_data['pd_kp2d'][i] + 0.5) * self.cfg.policy.img_patch_size,
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
img_spliced = splice_img([img_patch_raw, img_with_gt, img_with_pd, img_with_mesh, img_with_gt_mesh], grid_ids=[[0, 1, 2, 3, 4]])
img_spliced = annotate_img(img_spliced, vis_data['img_key'][i], pos='tl')
imgs_spliced.append(img_spliced)
try:
self.wis3d.set_scene_id(i)
self.wis3d.add_image(
image = img_spliced,
name = 'image',
)
except Exception as e:
get_logger().error(f'Failed to visualize the current performance on wis3d: {e}')
img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(vis_data['img_patch']))])
img_final = to_tensor(img_final, device=None).permute(2, 0, 1)
summary_writer.add_image(f'{mode}/visualization', img_final, self.global_step)
except Exception as e:
get_logger().error(f'Failed to visualize the current performance: {e}')
# traceback.print_exc()
def _adapt_hsmr_v1(self, batch):
from lib.data.augmentation.skel import rot_skel_on_plane
rot_deg = batch['augm_args']['rot_deg'] # (B,)
skel_params = rot_skel_on_plane(batch['raw_skel_params'], rot_deg)
batch['gt_params'] = {}
batch['gt_params']['poses_orient'] = skel_params['poses'][:, :3]
batch['gt_params']['poses_body'] = skel_params['poses'][:, 3:]
batch['gt_params']['betas'] = skel_params['betas']
has_skel_params = batch['has_skel_params']
batch['has_gt_params'] = {}
batch['has_gt_params']['poses_orient'] = has_skel_params['poses']
batch['has_gt_params']['poses_body'] = has_skel_params['poses']
batch['has_gt_params']['betas'] = has_skel_params['betas']
return batch
def _adapt_img_inference(self, img_patches):
return {'img_patch': img_patches} |