File size: 18,791 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from lib.kits.basic import *

import traceback
from tqdm import tqdm

from lib.body_models.common import make_SKEL
from lib.body_models.skel_wrapper import SKELWrapper, SKELOutput
from lib.body_models.abstract_skeletons import Skeleton_OpenPose25
from lib.utils.data import to_tensor, to_list
from lib.utils.camera import perspective_projection
from lib.utils.media import draw_kp2d_on_img, annotate_img, splice_img
from lib.utils.vis import render_mesh_overlay_img

from lib.modeling.losses import compute_poses_angle_prior_loss

from .skelify.utils import get_kp_active_j_masks


def compute_rel_change(prev_val: float, curr_val: float) -> float:
    '''
    Compute the relative change between two values.
    Copied: from https://github.com/vchoutas/smplify-x

    ### Args:
        - prev_val: float
        - curr_val: float

    ### Returns:
        - float
    '''
    return np.abs(prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1])


def gmof(x, sigma):
    '''
    Geman-McClure error function, to be used as a robust loss function.
    '''
    x_squared = x ** 2
    sigma_squared = sigma ** 2
    return (sigma_squared * x_squared) / (sigma_squared + x_squared)


class SKELifyRefiner():

    def __init__(self, cfg, name='SKELify', tb_logger=None, device='cuda:0'):
        self.cfg = cfg
        self.name = name
        self.eq_thre = cfg.early_quit_thresholds

        self.tb_logger = tb_logger

        self.device = device
        self.skel_model = instantiate(cfg.skel_model).to(device)

        # Dirty implementation for visualization.
        self.render_frames = []



    def __call__(
        self,
        gt_kp2d    : Union[torch.Tensor, np.ndarray],
        init_poses : Union[torch.Tensor, np.ndarray],
        init_betas : Union[torch.Tensor, np.ndarray],
        init_cam_t : Union[torch.Tensor, np.ndarray],
        img_patch  : Optional[np.ndarray] = None,
        **kwargs
    ):
        '''
        Use optimization to fit the SKEL parameters to the 2D keypoints.

        ### Args:
        - gt_kp2d : torch.Tensor or np.ndarray, (B, J, 3)
            - The last three dim means [x, y, conf].
            - The 2D keypoints to fit, they are defined in [-0.5, 0.5], zero-centered space.
        - init_poses : torch.Tensor or np.ndarray, (B, 46)
        - init_betas : torch.Tensor or np.ndarray, (B, 10)
        - init_cam_t : torch.Tensor or np.ndarray, (B, 3)
        - img_patch : np.ndarray or None, (B, H, W, 3)
            - The image patch for visualization. H, W are defined in normalized bounding box space.
            - If None, the visualization will simply use a black image.

        ### Returns:
        - TODO:
        '''
        # ⛩️ Prepare the input data.
        gt_kp2d = to_tensor(gt_kp2d, device=self.device).detach().float().clone()  # (B, J, 3)
        init_poses = to_tensor(init_poses, device=self.device).detach().float().clone()  # (B, 46)
        init_betas = to_tensor(init_betas, device=self.device).detach().float().clone()  # (B, 10)
        init_cam_t = to_tensor(init_cam_t, device=self.device).detach().float().clone()  # (B, 3)
        inputs = {
                'poses_orient': init_poses[:, :3],  # (B, 3)
                'poses_body'  : init_poses[:, 3:],  # (B, 43)
                'betas'       : init_betas,         # (B, 10)
                'cam_t'       : init_cam_t,         # (B, 3)
            }

        focal_length = np.ones(2) * self.cfg.focal_length / self.cfg.img_patch_size
        focal_length = focal_length.reshape(1, 2).repeat(inputs['cam_t'].shape[0], 1)

        # ⛩️ Optimization phases, controlled by config file.
        prev_phase_steps = 0  # accumulate the steps are *supposed* to be done in the previous phases
        for phase_id, phase_name in enumerate(self.cfg.phases):
            phase_cfg = self.cfg.phases[phase_name]
            # Preparation.
            optim_params = []
            for k in inputs.keys():
                if k in phase_cfg.params_keys:
                    inputs[k].requires_grad = True
                    optim_params.append(inputs[k])  # (B, D)
                else:
                    inputs[k].requires_grad = False

            optimizer = instantiate(phase_cfg.optimizer, optim_params, _recursive_=True)

            def closure():
                optimizer.zero_grad()

                # Data preparation.
                cam_t = inputs['cam_t']
                skel_params = {
                        'poses' : torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1),  # (B, 46)
                        'betas'    : inputs['betas'],  # (B, 10)
                        'skelmesh' : False,
                    }

                # Optimize steps.
                skel_output = self.skel_model(**skel_params)

                pd_kp2d = perspective_projection(
                        points       = to_tensor(skel_output.joints, device=self.device),
                        translation  = to_tensor(cam_t, device=self.device),
                        focal_length = to_tensor(focal_length, device=self.device),
                    )

                loss, losses = self._compute_losses(
                        act_losses   = phase_cfg.losses,
                        act_parts    = phase_cfg.get('parts', 'all'),
                        gt_kp2d      = gt_kp2d,
                        pd_kp2d      = pd_kp2d,
                        pd_params    = skel_params,
                        **phase_cfg.get('weights', {}),
                    )

                # For visualize the optimization process.
                _conf = gt_kp2d[..., 2]  # (B, J)
                metric = torch.sum((pd_kp2d - gt_kp2d[..., :2]) ** 2, dim=-1) * _conf  # (B, J)
                metric = metric.sum(dim=-1) / (torch.sum(_conf, dim=-1) + 1e-6)  # (B,)

                # Store logging data.
                if self.tb_logger is not None:
                    log_data.update({
                        'losses'      : losses,
                        'pd_kp2d'     : pd_kp2d[:self.cfg.logger.samples_per_record].detach().clone(),
                        'pd_verts'    : skel_output.skin_verts[:self.cfg.logger.samples_per_record].detach().clone(),
                        'cam_t'       : cam_t[:self.cfg.logger.samples_per_record].detach().clone(),
                        'metric'      : metric[:self.cfg.logger.samples_per_record].detach().clone(),
                        'optim_betas' : inputs['betas'][:self.cfg.logger.samples_per_record].detach().clone(),
                    })

                loss.backward()
                return loss.item()

            # Optimization loop.
            prev_loss = None
            with tqdm(range(phase_cfg.max_loop)) as bar:
                bar.set_description(f'[{phase_name}] Loss: ???')
                for i in bar:
                    log_data = {}
                    curr_loss = optimizer.step(closure)

                    # Logging.
                    if self.tb_logger is not None:
                        log_data.update({
                            'img_patch' : img_patch[:self.cfg.logger.samples_per_record] if img_patch is not None else None,
                            'gt_kp2d'   : gt_kp2d[:self.cfg.logger.samples_per_record].detach().clone(),
                        })
                        self._tb_log(prev_phase_steps + i, log_data)
                        # self._tb_log_for_report(prev_phase_steps + i, log_data)

                    bar.set_description(f'[{phase_name}] Loss: {curr_loss:.4f}')
                    if self._can_early_quit(optim_params, prev_loss, curr_loss):
                        break

                    prev_loss = curr_loss

            prev_phase_steps += phase_cfg.max_loop

        # ⛩️ Prepare the output data.
        outputs = {
            'poses': torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1).detach().clone(),  # (B, 46)
            'betas': inputs['betas'].detach().clone(),  # (B, 10)
            'cam_t': inputs['cam_t'].detach().clone(),  # (B, 3)
        }
        return outputs


    def _compute_losses(
        self,
        act_losses         : List[str],
        act_parts          : List[str],
        gt_kp2d            : torch.Tensor,
        pd_kp2d            : torch.Tensor,
        pd_params          : Dict,
        robust_sigma       : float = 100,
        shape_prior_weight : float = 5,
        angle_prior_weight : float = 15.2,
        *args, **kwargs,
    ):
        '''
        Compute the weighted losses according to the config file.
        Follow: https://github.com/nkolot/SPIN/blob/2476c436013055be5cb3905e4e4ecfa86966fac3/smplify/losses.py#L26-L58s
        '''
        B = len(gt_kp2d)
        act_j_masks = get_kp_active_j_masks(act_parts, device=gt_kp2d.device)  # (44,)

        # Reproject the 3D keypoints to image and compare the L2 error with the g.t. 2D keypoints.
        kp_conf = gt_kp2d[..., 2]  # (B, J)
        gt_kp2d = gt_kp2d[..., :2]  # (B, J, 2)
        reproj_err  = gmof(pd_kp2d - gt_kp2d, robust_sigma)  # (B, J, 2)
        reproj_loss = ((kp_conf ** 2) * reproj_err.sum(dim=-1) * act_j_masks[None]).sum(-1)  # (B,)

        # Regularize the shape parameters.
        shape_prior_loss = (shape_prior_weight ** 2) * (pd_params['betas'] ** 2).sum(dim=-1)  # (B,)

        # Use the SKEL angle prior knowledge (e.g., rotation limitation) to regularize the optimization process.
        # TODO: Is that necessary?
        angle_prior_loss = (angle_prior_weight ** 2) * compute_poses_angle_prior_loss(pd_params['poses']).mean()  # (,)

        losses = {
                'reprojection' : reproj_loss.mean(),      # (,)
                'shape_prior'  : shape_prior_loss.mean(), # (,)
                'angle_prior'  : angle_prior_loss,        # (,)
            }
        loss = torch.tensor(0., device=gt_kp2d.device)
        for k in act_losses:
            loss += losses[k]
        losses = {k: v.detach() for k, v in losses.items()}
        losses['sum'] = loss.detach()  # (,)
        return loss, losses


    def _can_early_quit(self, opt_params, prev_loss, curr_loss):
        ''' Judge whether to early quit the optimization process. If yes, return True, otherwise False.'''
        if self.cfg.early_quit_thresholds is None:
            # Never early quit.
            return False

        # Relative change test.
        if prev_loss is not None:
            loss_rel_change = compute_rel_change(prev_loss, curr_loss)
            if loss_rel_change < self.cfg.early_quit_thresholds.rel:
                get_logger().info(f'Early quit due to relative change: {loss_rel_change:.4f} = rel({prev_loss}, {curr_loss})')
                return True

        # Absolute change test.
        if all([
            torch.abs(param.grad.max()).item() < self.cfg.early_quit_thresholds.abs
            for param in opt_params if param.grad is not None
        ]):
            get_logger().info(f'Early quit due to absolute change.')
            return True

        return False


    @rank_zero_only
    def _tb_log(self, step_cnt:int, log_data:Dict, *args, **kwargs):
        ''' Write the logging information to the TensorBoard. '''
        if step_cnt != 0 and (step_cnt + 1) % self.cfg.logger.interval != 0:
            return

        summary_writer = self.tb_logger.experiment

        # Save losses.
        for loss_name, loss_val in log_data['losses'].items():
            summary_writer.add_scalar(f'skelify/{loss_name}', loss_val.detach().item(), step_cnt)

        # Visualization of the optimization process.  TODO: Maybe we can make this more elegant.
        if log_data['img_patch'] is None:
            log_data['img_patch'] = [np.zeros((self.cfg.img_patch_size, self.cfg.img_patch_size, 3), dtype=np.uint8)] \
                                  * len(log_data['gt_kp2d'])

        if len(self.render_frames) < 1:
            self.init_v = log_data['pd_verts']
            self.init_metric = log_data['metric']
            self.init_ct = log_data['cam_t']

        # Overlay the skin mesh of the results on the original image.
        try:
            imgs_spliced = []
            for i, img_patch in enumerate(log_data['img_patch']):
                metric = log_data['metric'][i].item()

                img_with_init = render_mesh_overlay_img(
                        faces      = self.skel_model.skin_f,
                        verts      = self.init_v[i],
                        K4         = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
                        img        = img_patch,
                        Rt         = [torch.eye(3), self.init_ct[i]],
                        mesh_color = 'pink',
                    )
                img_with_init = annotate_img(img_with_init, 'init')
                img_with_init = annotate_img(img_with_init, f'Quality: {self.init_metric[i].item()*1000:.3f}/1e3', pos='tl')

                img_with_mesh = render_mesh_overlay_img(
                        faces      = self.skel_model.skin_f,
                        verts      = log_data['pd_verts'][i],
                        K4         = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
                        img        = img_patch,
                        Rt         = [torch.eye(3), log_data['cam_t'][i]],
                        mesh_color = 'pink',
                    )
                img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')
                betas_max = log_data['optim_betas'][i].abs().max().item()
                img_with_mesh = annotate_img(img_with_mesh, f'Quality: {metric*1000:.3f}/1e3\nbetas_max: {betas_max:.3f}', pos='tl')
                img_patch_raw = annotate_img(img_patch, 'raw')

                log_data['gt_kp2d'][i][..., :2] = (log_data['gt_kp2d'][i][..., :2] + 0.5) * self.cfg.img_patch_size
                img_with_gt = annotate_img(img_patch, 'gt_kp2d')
                img_with_gt = draw_kp2d_on_img(
                        img_with_gt,
                        log_data['gt_kp2d'][i],
                        Skeleton_OpenPose25.bones,
                        Skeleton_OpenPose25.bone_colors,
                    )

                log_data['pd_kp2d'][i] = (log_data['pd_kp2d'][i] + 0.5) * self.cfg.img_patch_size
                img_with_pd = annotate_img(img_patch, 'pd_kp2d')
                img_with_pd = draw_kp2d_on_img(
                        img_with_pd,
                        log_data['pd_kp2d'][i],
                        Skeleton_OpenPose25.bones,
                        Skeleton_OpenPose25.bone_colors,
                    )

                img_spliced = splice_img(
                        img_grids = [img_patch_raw, img_with_gt, img_with_pd, img_with_init, img_with_mesh],
                        # grid_ids  = [[0, 1, 2, 3, 4]],
                        grid_ids  = [[1, 2, 3, 4]],
                    )
                imgs_spliced.append(img_spliced)

            img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(log_data['img_patch']))])

            img_final = to_tensor(img_final, device=None).permute(2, 0, 1)  # (3, H, W)
            summary_writer.add_image('skelify/visualization', img_final, step_cnt)

            self.render_frames.append(img_final)
        except Exception as e:
            get_logger().error(f'Failed to visualize the optimization process: {e}')
            # traceback.print_exc()


    @rank_zero_only
    def _tb_log_for_report(self, step_cnt:int, log_data:Dict, *args, **kwargs):
        ''' Write the logging information to the TensorBoard. '''

        get_logger().warning(f'This logging functions is just for presentation.')

        if len(self.render_frames) < 1:
            self.init_v = log_data['pd_verts']
            self.init_ct = log_data['cam_t']

        if step_cnt != 0 and (step_cnt + 1) % self.cfg.logger.interval != 0:
            return

        summary_writer = self.tb_logger.experiment

        # Save losses.
        for loss_name, loss_val in log_data['losses'].items():
            summary_writer.add_scalar(f'losses/{loss_name}', loss_val.detach().item(), step_cnt)

        # Visualization of the optimization process.  TODO: Maybe we can make this more elegant.
        if log_data['img_patch'] is None:
            log_data['img_patch'] = [np.zeros((self.cfg.img_patch_size, self.cfg.img_patch_size, 3), dtype=np.uint8)] \
                                  * len(log_data['gt_kp2d'])

        # Overlay the skin mesh of the results on the original image.
        try:
            imgs_spliced = []
            for i, img_patch in enumerate(log_data['img_patch']):
                img_with_init = render_mesh_overlay_img(
                        faces      = self.skel_model.skin_f,
                        verts      = self.init_v[i],
                        K4         = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
                        img        = img_patch,
                        Rt         = [torch.eye(3), self.init_ct[i]],
                        mesh_color = 'pink',
                    )
                img_with_init = annotate_img(img_with_init, 'init')

                img_with_mesh = render_mesh_overlay_img(
                        faces      = self.skel_model.skin_f,
                        verts      = log_data['pd_verts'][i],
                        K4         = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
                        img        = img_patch,
                        Rt         = [torch.eye(3), log_data['cam_t'][i]],
                        mesh_color = 'pink',
                    )
                img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')

                img_patch_raw = annotate_img(img_patch, 'raw')

                log_data['gt_kp2d'][i][..., :2] = (log_data['gt_kp2d'][i][..., :2] + 0.5) * self.cfg.img_patch_size
                img_with_gt = annotate_img(img_patch, 'gt_kp2d')
                img_with_gt = draw_kp2d_on_img(
                        img_with_gt,
                        log_data['gt_kp2d'][i],
                        Skeleton_OpenPose25.bones,
                        Skeleton_OpenPose25.bone_colors,
                    )

                img_spliced = splice_img([img_patch_raw, img_with_gt, img_with_init, img_with_mesh], grid_ids=[[0, 1, 2, 3]])
                imgs_spliced.append(img_spliced)

            img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(log_data['img_patch']))])

            img_final = to_tensor(img_final, device=None).permute(2, 0, 1)
            summary_writer.add_image('visualization', img_final, step_cnt)

            self.render_frames.append(img_final)
        except Exception as e:
            get_logger().error(f'Failed to visualize the optimization process: {e}')
            traceback.print_exc()