File size: 7,805 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from lib.kits.basic import *

from lib.utils.camera import perspective_projection
from lib.modeling.losses import compute_poses_angle_prior_loss

from .utils import (
    gmof,
    guess_cam_z,
    estimate_kp2d_scale,
    get_kp_active_jids,
    get_params_active_q_masks,
)

def build_closure(
    self,
    cfg,
    optimizer,
    inputs,
    focal_length : float,
    gt_kp2d,
    log_data,
):
    B = len(gt_kp2d)

    act_parts = instantiate(cfg.parts)
    act_q_masks = None
    if not (act_parts == 'all' or 'all' in act_parts):
        act_q_masks = get_params_active_q_masks(act_parts)

    # Shortcuts for the inference of the skeleton model.
    def inference_skel(inputs):
        poses_active = torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1)  # (B, 46)
        if act_q_masks is not None:
            poses_hidden = poses_active.clone().detach()  # (B, 46)
            poses = poses_active * act_q_masks + poses_hidden * (1 - act_q_masks)  # (B, 46)
        else:
            poses = poses_active
        skel_params = {
                'poses' : poses,  # (B, 46)
                'betas' : inputs['betas'],  # (B, 10)
            }
        skel_output = self.skel_model(**skel_params, skelmesh=False)
        return skel_params, skel_output

    # Estimate the camera depth as an initialization if depth loss is enabled.
    gs_cam_z = None
    if 'w_depth' in cfg.losses:
        with torch.no_grad():
            _, skel_output = inference_skel(inputs)
            gs_cam_z = guess_cam_z(
                    pd_kp3d      = skel_output.joints,
                    gt_kp2d      = gt_kp2d,
                    focal_length = focal_length,
                )

    # Prepare the focal length for the perspective projection.
    focal_length_xy = np.ones((B, 2)) * focal_length  # (B, 2)


    def closure():
        optimizer.zero_grad()

        # 📦 Data preparation.
        with PM.time_monitor('SKEL-forward'):
            skel_params, skel_output = inference_skel(inputs)

        with PM.time_monitor('reproj'):
            pd_kp2d = perspective_projection(
                    points       = to_tensor(skel_output.joints, device=self.device),
                    translation  = to_tensor(inputs['cam_t'], device=self.device),
                    focal_length = to_tensor(focal_length_xy, device=self.device),
                )

        with PM.time_monitor('compute_losses'):
            loss, losses = compute_losses(
                    # Loss configuration.
                    loss_cfg = instantiate(cfg.losses),
                    parts    = act_parts,
                    # Data inputs.
                    gt_kp2d   = gt_kp2d,
                    pd_kp2d   = pd_kp2d,
                    pd_params = skel_params,
                    pd_cam_z  = inputs['cam_t'][:, 2],
                    gs_cam_z  = gs_cam_z,
                )

        with PM.time_monitor('visualization'):
            VISUALIZE = True
            if VISUALIZE:
                # For visualize the optimization process.
                kp2d_err = torch.sum((pd_kp2d - gt_kp2d[..., :2]) ** 2, dim=-1) * gt_kp2d[..., 2]  # (B, J)
                kp2d_err = kp2d_err.sum(dim=-1) / (torch.sum(gt_kp2d[..., 2], dim=-1) + 1e-6)  # (B,)

                # Store logging data.
                if self.tb_logger is not None:
                    log_data.update({
                        'losses'      : losses,
                        'pd_kp2d'     : pd_kp2d[:self.n_samples].detach().clone(),
                        'pd_verts'    : skel_output.skin_verts[:self.n_samples].detach().clone(),
                        'cam_t'       : inputs['cam_t'][:self.n_samples].detach().clone(),
                        'optim_betas' : inputs['betas'][:self.n_samples].detach().clone(),
                        'kp2d_err'    : kp2d_err[:self.n_samples].detach().clone(),
                    })

        with PM.time_monitor('backwards'):
            loss.backward()
        return loss.item()

    return closure


def compute_losses(
    loss_cfg  : Dict[str, Union[bool, float]],
    parts     : List[str],
    gt_kp2d   : torch.Tensor,
    pd_kp2d   : torch.Tensor,
    pd_params : Dict[str, torch.Tensor],
    pd_cam_z  : torch.Tensor,
    gs_cam_z  : Optional[torch.Tensor] = None,
):
    '''
    ### Args
    - loss_cfg: Dict[str, Union[bool, float]]
        - Special option flags (`f_xxx`) or loss weights (`w_xxx`).
    - parts: List[str]
        - The list of the active joint parts groups. 
        - Among {'all', 'torso', 'torso-lite', 'limbs', 'head', 'limbs_proximal', 'limbs_distal'}.
    - gt_kp2d: torch.Tensor (B, 44, 3)
        - The ground-truth 2D keypoints with confidence.
    - pd_kp2d: torch.Tensor (B, 44, 2)
        - The predicted 2D keypoints.
    - pd_params: Dict[str, torch.Tensor]
        - poses: torch.Tensor (B, 46)
        - betas: torch.Tensor (B, 10)
    - pd_cam_z: torch.Tensor (B,)
        - The predicted camera depth translation.
    - gs_cam_z: Optional[torch.Tensor] (B,)
        - The guessed camera depth translation.
        
    ### Returns
    - loss: torch.Tensor (,)
        - The weighted loss value for optimization.
    - losses: Dict[str, float]
        - The dictionary of the loss values for logging.
    '''

    losses = {}
    loss = torch.tensor(0.0, device=gt_kp2d.device)
    kp2d_conf = gt_kp2d[:, :, 2]  # (B, J)
    gt_kp2d = gt_kp2d[:, :, :2]  # (B, J, 2)

    # Special option flags.
    f_normalize_kp2d = loss_cfg.get('f_normalize_kp2d', False)

    if f_normalize_kp2d:
        scale2mean = loss_cfg.get('f_normalize_kp2d_to_mean', False)
        scale2d = estimate_kp2d_scale(gt_kp2d)  # (B,)
        pd_kp2d = pd_kp2d / (scale2d[:, None, None] + 1e-6)  # (B, J, 2)
        gt_kp2d = gt_kp2d / (scale2d[:, None, None] + 1e-6)  # (B, J, 2)
        if scale2mean:
            scale2d_mean = scale2d.mean()
            pd_kp2d = pd_kp2d * scale2d_mean  # (B, J, 2)
            gt_kp2d = gt_kp2d * scale2d_mean  # (B, J, 2)

    # Mask the keypoints.
    act_jids = get_kp_active_jids(parts)
    kp2d_conf = kp2d_conf[:, act_jids]  # (B, J)
    gt_kp2d = gt_kp2d[:, act_jids, :]  # (B, J, 2)
    pd_kp2d = pd_kp2d[:, act_jids, :]  # (B, J, 2)

    # Calculate weighted losses.
    w_depth = loss_cfg.get('w_depth', None)
    w_reprojection = loss_cfg.get('w_reprojection', None)
    w_shape_prior = loss_cfg.get('w_shape_prior', None)
    w_angle_prior = loss_cfg.get('w_angle_prior', None)

    if w_depth:
        assert gs_cam_z is not None, 'The guessed camera depth is required for the depth loss.'
        depth_loss = (gs_cam_z - pd_cam_z).pow(2)  # (B,)
        loss += (w_depth ** 2) * depth_loss.mean()  # (,)
        losses['depth'] = (w_depth ** 2) * depth_loss.mean().item()  # float

    if w_reprojection:
        reproj_err_j = gmof(pd_kp2d - gt_kp2d).sum(dim=-1) # (B, J)
        reproj_err_j = kp2d_conf.pow(2) * reproj_err_j  # (B, J)
        reproj_loss = reproj_err_j.sum(-1)  # (B,)
        loss += (w_reprojection ** 2) * reproj_loss.mean()  # (,)
        losses['reprojection'] = (w_reprojection ** 2) * reproj_loss.mean().item()  # float

    if w_shape_prior:
        shape_prior_loss = pd_params['betas'].pow(2).sum(dim=-1)  # (B,)
        loss += (w_shape_prior ** 2) * shape_prior_loss.mean()  # (,)
        losses['shape_prior'] = (w_shape_prior ** 2) * shape_prior_loss.mean().item()  # float

    if w_angle_prior:
        w_angle_prior *= loss_cfg.get('w_angle_prior_scale', 1.0)
        angle_prior_loss = compute_poses_angle_prior_loss(pd_params['poses'])  # (B,)
        loss += (w_angle_prior ** 2) * angle_prior_loss.mean()  # (,)
        losses['angle_prior'] = (w_angle_prior ** 2) * angle_prior_loss.mean().item()  # float

    losses['weighted_sum'] = loss.item()  # float
    return loss, losses