File size: 8,037 Bytes
639e75e
9b5b26a
 
c19d193
6aae614
3805c34
 
 
 
 
 
639e75e
 
 
8fe992b
9b5b26a
 
 
3805c34
639e75e
9ca2697
3805c34
9ca2697
3805c34
639e75e
 
3805c34
 
 
 
 
 
 
639e75e
 
 
 
 
 
 
3805c34
 
 
 
 
 
639e75e
 
 
 
 
 
 
3805c34
 
 
 
639e75e
 
3805c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639e75e
3805c34
 
639e75e
 
3805c34
 
 
639e75e
3805c34
 
639e75e
3805c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639e75e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805c34
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
639e75e
 
 
 
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
639e75e
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import instaloader
import os
from PIL import Image
import aiohttp
import asyncio
from aiofiles import open as aio_open
from qwen_vl_utils import process_vision_info
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
import torch

from Gradio_UI import GradioUI


@tool
def my_insta_analizer(username: str) -> str: #it's import to specify the return type
    """A tool that analyzes your Instagram profile and describes how you appear to people seeing it for the first time.
    Args:
        username: The Instagram username of the person whose profile needs to be analyzed. Always strats from "@". Example: @irusvvirus.
    """
    # return "I have analized your priffile - you are the best"
    username = username.replace("@", "")
    DATA_ROOT = f"data/{username}"
    MAX_SIZE = (144, 192)
    TOP_K_POSTS = 12
    os.makedirs(DATA_ROOT, exist_ok=True)
    
    # Login to Insta
    L = instaloader.Instaloader()
    # L.load_session("hfia2025", { 
    #     "csrftoken": "EvyQWJTLWfbLy00C1h2hJoMmW3V002ik",
    #     "sessionid": "72565382956%3AbXg6LSEaqDXogy%3A21%3AAYc8jNkM18-P4t4l7dokdj3NK5odeGP6xfCwMiL0NA",
    #     "ds_user_id": "72565382956",
    #     "mid": "Zz7yUQAEAAHHANNrTkDrJG-KA05E",
    #     "ig_did": "44A88963-6613-41AA-93F0-418DF87BDA72"
    # })
    
    # Get target profile
    profile = instaloader.Profile.from_username(L.context, username) 
    
    # Read general info
    user_meta = {
        "username": profile.username,
        "full Name": profile.full_name,
        "bio": profile.biography,
        "followers": profile.followers,
        "followees": profile.followees,
        "private": profile.is_private,
        "verified": profile.is_verified,
    }
    if user_meta["private"]:
        return "This profile is private. We are not allowed to access it."
    
    # return f"I loged to inst && Profile {username} looks great && I recieved next user meta={user_meta}!"
    
    # Scrape posts 
    posts = profile.get_posts()
    
    async def download_post(post, session):
        preview_url = post.url
        async with session.get(preview_url) as response:
            if response.status == 200:
                filename = f"{post.shortcode}_preview.jpg"
                filepath = os.path.join(DATA_ROOT, filename)
                async with aio_open(filepath, "wb") as file:
                    await file.write(await response.read())
                print(f"✅ Saved: {filepath}")
            else:
                print(f"❌ Failed to download: {preview_url}")

        meta = {
            "shortcode": post.shortcode,
            "likes": post.likes,
            # "comments": post.comments,
            "caption": post.caption,
            "date": str(post.date),
        }
        return meta 

    async def process_posts(posts):
        tasks = []
        async with aiohttp.ClientSession() as session:
            for i, post in enumerate(posts):
                if i == TOP_K_POSTS: 
                    break
                print(f"Downloading post {i}...")
                tasks.append(download_post(post, session))
            result = await asyncio.gather(*tasks)  
        return result

    posts_meta = asyncio.run(process_posts(posts))
    
    def create_image_grid(images, grid_size=(3, 4)):
        cols, rows = grid_size
        grid_width = cols * MAX_SIZE[0]
        grid_height = rows * MAX_SIZE[1]
        grid_image = Image.new("RGB", (grid_width, grid_height), "white")
        for index, img in enumerate(images):
            row, col = divmod(index, cols) 
            x_offset = col * MAX_SIZE[0]
            y_offset = row * MAX_SIZE[1]
            grid_image.paste(img, (x_offset, y_offset))
        return grid_image

    def make_4_3_crop(image):
        """Crops the center of an image to a 4:3 aspect ratio."""
        width, height = image.size
        target_ratio = 3 / 4

        # Determine new width and height based on the 4:3 ratio
        if width / height > target_ratio:
            # Image is too wide, crop width
            new_width = int(height * target_ratio)
            new_height = height
        else:
            # Image is too tall, crop height
            new_width = width
            new_height = int(width / target_ratio)

        # Calculate cropping box (centered)
        left = (width - new_width) // 2
        top = (height - new_height) // 2
        right = left + new_width
        bottom = top + new_height

        return image.crop((left, top, right, bottom))

    posts_images = []
    for p in posts_meta:
        filename = p["shortcode"] + "_preview.jpg"
        filepath = os.path.join(DATA_ROOT, filename)
        img = Image.open(filepath)
        img = make_4_3_crop(img) 
        img.thumbnail(MAX_SIZE)
        posts_images.append(img)
    posts_image = create_image_grid(posts_images)
    user_meta["posts"] = posts_meta
    
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2.5-VL-7B-Instruct",
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
        device_map="auto",
    )
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": posts_image,
                },
                {"type": "text", "text": "Describe this image."},
            ],
        }
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    return output_text


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
    custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[my_insta_analizer, get_current_time_in_timezone, final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()