File size: 11,672 Bytes
feec0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import json

import torch
import torch.nn.functional as F
import numpy as np
import matplotlib
from scipy.io import wavfile
from matplotlib import pyplot as plt


matplotlib.use("Agg")


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")



def to_device(data, device):
    if len(data) == 13:
        (
            ids,
            raw_texts,
            speakers,
            texts,
            src_lens,
            max_src_len,
            emotions,
            mels,
            mel_lens,
            max_mel_len,
            pitches,
            energies,
            durations,
        ) = data

        speakers = torch.from_numpy(speakers).long().to(device)
        texts = torch.from_numpy(texts).long().to(device)
        emotions = torch.from_numpy(emotions).long().to(device)
        src_lens = torch.from_numpy(src_lens).to(device)
        mels = torch.from_numpy(mels).float().to(device)
        mel_lens = torch.from_numpy(mel_lens).to(device)
        pitches = torch.from_numpy(pitches).float().to(device)
        energies = torch.from_numpy(energies).to(device)
        durations = torch.from_numpy(durations).long().to(device)

        return (
            ids,
            raw_texts,
            speakers,
            texts,
            src_lens,
            max_src_len,
            emotions,
            mels,
            mel_lens,
            max_mel_len,
            pitches,
            energies,
            durations,
        )

    if len(data) == 6:
        (ids, raw_texts, speakers, texts, src_lens, max_src_len) = data

        speakers = torch.from_numpy(speakers).long().to(device)
        texts = torch.from_numpy(texts).long().to(device)
        src_lens = torch.from_numpy(src_lens).to(device)

        return (ids, raw_texts, speakers, texts, src_lens, max_src_len)

    if len(data) == 7:
        (ids, raw_texts, speakers, texts, src_lens, max_src_len, emotions) = data

        speakers = torch.from_numpy(speakers).long().to(device)
        emotions = torch.from_numpy(emotions).long().to(device)
        texts = torch.from_numpy(texts).long().to(device)
        src_lens = torch.from_numpy(src_lens).to(device)

    return (ids, raw_texts, speakers, texts, src_lens, max_src_len, emotions)


def log(
    logger, step=None, losses=None, fig=None, audio=None, sampling_rate=22050, tag=""
):
    if losses is not None:
        logger.add_scalar("Loss/total_loss", losses[0], step)
        logger.add_scalar("Loss/mel_loss", losses[1], step)
        logger.add_scalar("Loss/mel_postnet_loss", losses[2], step)
        logger.add_scalar("Loss/pitch_loss", losses[3], step)
        logger.add_scalar("Loss/energy_loss", losses[4], step)
        logger.add_scalar("Loss/duration_loss", losses[5], step)

    if fig is not None:
        logger.add_figure(tag, fig)

    if audio is not None:
        logger.add_audio(
            tag,
            audio / max(abs(audio)),
            sample_rate=sampling_rate,
        )


def get_mask_from_lengths(lengths, max_len=None):
    batch_size = lengths.shape[0]
    if max_len is None:
        max_len = torch.max(lengths).item()

    ids = torch.arange(0, max_len).unsqueeze(
        0).expand(batch_size, -1).to(device)
    mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)

    return mask


def expand(values, durations):
    out = list()
    for value, d in zip(values, durations):
        out += [value] * max(0, int(d))
    return np.array(out)


def synth_one_sample(targets, predictions, vocoder, model_config, preprocess_config):

    basename = targets[0][0]
    src_len = predictions[8][0].item()
    mel_len = predictions[9][0].item()
    mel_target = targets[7][0, :mel_len].detach().transpose(0, 1)
    mel_prediction = predictions[1][0, :mel_len].detach().transpose(0, 1)
    duration = targets[12][0, :src_len].detach().cpu().numpy()
    if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
        pitch = targets[10][0, :src_len].detach().cpu().numpy()
        pitch = expand(pitch, duration)
    else:
        pitch = targets[10][0, :mel_len].detach().cpu().numpy()
    if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
        energy = targets[11][0, :src_len].detach().cpu().numpy()
        energy = expand(energy, duration)
    else:
        energy = targets[11][0, :mel_len].detach().cpu().numpy()

    with open(
        os.path.join(preprocess_config["path"]
                     ["preprocessed_path"], "stats.json")
    ) as f:
        stats = json.load(f)
        stats = stats["pitch"] + stats["energy"][:2]

    fig = plot_mel(
        [
            (mel_prediction.cpu().numpy(), pitch, energy),
            (mel_target.cpu().numpy(), pitch, energy),
        ],
        stats,
        ["Synthetized Spectrogram", "Ground-Truth Spectrogram"],
    )

    if vocoder is not None:
        from .model import vocoder_infer

        wav_reconstruction = vocoder_infer(
            mel_target.unsqueeze(0),
            vocoder,
            model_config,
            preprocess_config,
        )[0]
        wav_prediction = vocoder_infer(
            mel_prediction.unsqueeze(0),
            vocoder,
            model_config,
            preprocess_config,
        )[0]
    else:
        wav_reconstruction = wav_prediction = None

    return fig, wav_reconstruction, wav_prediction, basename


def synth_samples(targets, predictions, vocoder, model_config, preprocess_config, path):

    basenames = targets[0]
    for i in range(len(predictions[0])):
        basename = basenames[i]
        src_len = predictions[8][i].item()
        mel_len = predictions[9][i].item()
        mel_prediction = predictions[1][i, :mel_len].detach().transpose(0, 1)
        duration = predictions[5][i, :src_len].detach().cpu().numpy()
        if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
            pitch = predictions[2][i, :src_len].detach().cpu().numpy()
            pitch = expand(pitch, duration)
        else:
            pitch = predictions[2][i, :mel_len].detach().cpu().numpy()
        if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
            energy = predictions[3][i, :src_len].detach().cpu().numpy()
            energy = expand(energy, duration)
        else:
            energy = predictions[3][i, :mel_len].detach().cpu().numpy()

        with open(
            os.path.join(preprocess_config["path"]
                         ["preprocessed_path"], "stats.json")
        ) as f:
            stats = json.load(f)
            stats = stats["pitch"] + stats["energy"][:2]

        fig = plot_mel(
            [
                (mel_prediction.cpu().numpy(), pitch, energy),
            ],
            stats,
            ["Synthetized Spectrogram"],
        )
        plt.savefig(os.path.join(path, "{}.png".format(basename)))
        plt.close()

    from .model import vocoder_infer

    mel_predictions = predictions[1].transpose(1, 2)
    lengths = predictions[9] * \
        preprocess_config["preprocessing"]["stft"]["hop_length"]
    wav_predictions = vocoder_infer(
        mel_predictions, vocoder, model_config, preprocess_config, lengths=lengths
    )

    sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
    for wav, basename in zip(wav_predictions, basenames):
        wavfile.write(os.path.join(
            path, "{}.wav".format(basename)), sampling_rate, wav)


def plot_mel(data, stats, titles):
    fig, axes = plt.subplots(len(data), 1, squeeze=False)
    if titles is None:
        titles = [None for i in range(len(data))]
    pitch_min, pitch_max, pitch_mean, pitch_std, energy_min, energy_max = stats
    pitch_min = pitch_min * pitch_std + pitch_mean
    pitch_max = pitch_max * pitch_std + pitch_mean

    def add_axis(fig, old_ax):
        ax = fig.add_axes(old_ax.get_position(), anchor="W")
        ax.set_facecolor("None")
        return ax

    for i in range(len(data)):
        mel, pitch, energy = data[i]
        pitch = pitch * pitch_std + pitch_mean
        axes[i][0].imshow(mel, origin="lower")
        axes[i][0].set_aspect(2.5, adjustable="box")
        axes[i][0].set_ylim(0, mel.shape[0])
        axes[i][0].set_title(titles[i], fontsize="medium")
        axes[i][0].tick_params(labelsize="x-small",
                               left=False, labelleft=False)
        axes[i][0].set_anchor("W")

        ax1 = add_axis(fig, axes[i][0])
        ax1.plot(pitch, color="tomato")
        ax1.set_xlim(0, mel.shape[1])
        ax1.set_ylim(0, pitch_max)
        ax1.set_ylabel("F0", color="tomato")
        ax1.tick_params(
            labelsize="x-small", colors="tomato", bottom=False, labelbottom=False
        )

        ax2 = add_axis(fig, axes[i][0])
        ax2.plot(energy, color="darkviolet")
        ax2.set_xlim(0, mel.shape[1])
        ax2.set_ylim(energy_min, energy_max)
        ax2.set_ylabel("Energy", color="darkviolet")
        ax2.yaxis.set_label_position("right")
        ax2.tick_params(
            labelsize="x-small",
            colors="darkviolet",
            bottom=False,
            labelbottom=False,
            left=False,
            labelleft=False,
            right=True,
            labelright=True,
        )

    return fig


def pad_1D(inputs, PAD=0):
    def pad_data(x, length, PAD):
        x_padded = np.pad(
            x, (0, length - x.shape[0]), mode="constant", constant_values=PAD
        )
        return x_padded

    max_len = max((len(x) for x in inputs))
    padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])

    return padded


def pad_2D(inputs, maxlen=None):
    def pad(x, max_len):
        PAD = 0
        if np.shape(x)[0] > max_len:
            raise ValueError("not max_len")

        s = np.shape(x)[1]
        x_padded = np.pad(
            x, (0, max_len - np.shape(x)[0]), mode="constant", constant_values=PAD
        )
        return x_padded[:, :s]

    if maxlen:
        output = np.stack([pad(x, maxlen) for x in inputs])
    else:
        max_len = max(np.shape(x)[0] for x in inputs)
        output = np.stack([pad(x, max_len) for x in inputs])

    return output


def pad(input_ele, mel_max_length=None):
    if mel_max_length:
        max_len = mel_max_length
    else:
        max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])

    out_list = list()
    for i, batch in enumerate(input_ele):
        if len(batch.shape) == 1:
            one_batch_padded = F.pad(
                batch, (0, max_len - batch.size(0)), "constant", 0.0
            )
        elif len(batch.shape) == 2:
            one_batch_padded = F.pad(
                batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
            )
        out_list.append(one_batch_padded)
    out_padded = torch.stack(out_list)
    return out_padded

def get_roberta_emotion_embeddings(tokenizer, model, text):
    model.to(device)
    tokenized_input = tokenizer(text, padding='max_length', max_length=128, truncation=True, return_tensors="pt")
    input_ids = tokenized_input['input_ids'].to(model.device)
    attention_mask = tokenized_input['attention_mask'].to(model.device)

    emotions = "amused", "anger", "disgust", "neutral", "sleepiness"
    with torch.no_grad():
        outputs = model(input_ids, attention_mask=attention_mask)
        embeddings = outputs.logits

        # get the index of the predicted emotion
        emotion_index = torch.argmax(embeddings, dim=1).item()

         # get the corresponding emotion from the list
        predicted_emotion = emotions[emotion_index]
        print("Predicted emotion:", predicted_emotion)
    return embeddings