File size: 3,596 Bytes
feec0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import os

import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader

from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample
from model import FastSpeech2Loss
from dataset import Dataset


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def evaluate(model, step, configs, logger=None, vocoder=None):
    preprocess_config, model_config, train_config = configs

    # Get dataset
    dataset = Dataset(
        "val.txt", preprocess_config, train_config, sort=False, drop_last=False
    )
    batch_size = train_config["optimizer"]["batch_size"]
    loader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        collate_fn=dataset.collate_fn,
    )

    # Get loss function
    Loss = FastSpeech2Loss(preprocess_config, model_config).to(device)

    # Evaluation
    loss_sums = [0 for _ in range(6)]
    for batchs in loader:
        for batch in batchs:
            batch = to_device(batch, device)
            with torch.no_grad():
                # Forward
                output = model(*(batch[2:]))

                # Cal Loss
                losses = Loss(batch, output)

                for i in range(len(losses)):
                    loss_sums[i] += losses[i].item() * len(batch[0])

    loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]

    message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format(
        *([step] + [l for l in loss_means])
    )

    if logger is not None:
        fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
            batch,
            output,
            vocoder,
            model_config,
            preprocess_config,
        )

        log(logger, step, losses=loss_means)
        log(
            logger,
            fig=fig,
            tag="Validation/step_{}_{}".format(step, tag),
        )
        sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
        log(
            logger,
            audio=wav_reconstruction,
            sampling_rate=sampling_rate,
            tag="Validation/step_{}_{}_reconstructed".format(step, tag),
        )
        log(
            logger,
            audio=wav_prediction,
            sampling_rate=sampling_rate,
            tag="Validation/step_{}_{}_synthesized".format(step, tag),
        )

    return message


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--restore_step", type=int, default=30000)
    parser.add_argument(
        "-p",
        "--preprocess_config",
        type=str,
        required=True,
        help="path to preprocess.yaml",
    )
    parser.add_argument(
        "-m", "--model_config", type=str, required=True, help="path to model.yaml"
    )
    parser.add_argument(
        "-t", "--train_config", type=str, required=True, help="path to train.yaml"
    )
    args = parser.parse_args()

    # Read Config
    preprocess_config = yaml.load(
        open(args.preprocess_config, "r"), Loader=yaml.FullLoader
    )
    model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
    train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
    configs = (preprocess_config, model_config, train_config)

    # Get model
    model = get_model(args, configs, device, train=False).to(device)

    message = evaluate(model, args.restore_step, configs)
    print(message)