File size: 11,580 Bytes
feec0bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import random
import json
import tgt
import librosa
import numpy as np
import pyworld as pw
from scipy.interpolate import interp1d
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import audio as Audio
class Preprocessor:
def __init__(self, config):
self.config = config
self.emo_dir = config["path"]["emo_path"]
self.in_dir = config["path"]["raw_path"]
self.out_dir = config["path"]["preprocessed_path"]
self.val_size = config["preprocessing"]["val_size"]
self.sampling_rate = config["preprocessing"]["audio"]["sampling_rate"]
self.hop_length = config["preprocessing"]["stft"]["hop_length"]
assert config["preprocessing"]["pitch"]["feature"] in [
"phoneme_level",
"frame_level",
]
assert config["preprocessing"]["energy"]["feature"] in [
"phoneme_level",
"frame_level",
]
self.pitch_phoneme_averaging = (
config["preprocessing"]["pitch"]["feature"] == "phoneme_level"
)
self.energy_phoneme_averaging = (
config["preprocessing"]["energy"]["feature"] == "phoneme_level"
)
self.pitch_normalization = config["preprocessing"]["pitch"]["normalization"]
self.energy_normalization = config["preprocessing"]["energy"]["normalization"]
self.STFT = Audio.stft.TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
def build_from_path(self):
os.makedirs((os.path.join(self.out_dir, "mel")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "pitch")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "energy")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "duration")), exist_ok=True)
print("Processing Data ...")
out = list()
n_frames = 0
pitch_scaler = StandardScaler()
energy_scaler = StandardScaler()
# add emotion dictionary
emotions = {}
with open(os.path.join(self.emo_dir), "r", encoding='utf-8') as f:
i = 0
for line in f:
emotion = line.strip().split(None, 1)
emotions[emotion[0]] = i
i += 1
# Compute pitch, energy, duration, and mel-spectrogram
speakers = {}
for i, speaker in enumerate(tqdm(os.listdir(self.in_dir))):
speakers[speaker] = i
for wav_name in os.listdir(os.path.join(self.in_dir, speaker)):
if ".wav" not in wav_name:
continue
basename = wav_name.split(".")[0]
tg_path = os.path.join(
self.out_dir, "TextGrid", speaker, "{}.TextGrid".format(
basename)
)
if os.path.exists(tg_path):
ret = self.process_utterance(speaker, basename)
if ret is None:
continue
else:
info, pitch, energy, n = ret
out.append(info)
if len(pitch) > 0:
pitch_scaler.partial_fit(pitch.reshape((-1, 1)))
if len(energy) > 0:
energy_scaler.partial_fit(energy.reshape((-1, 1)))
n_frames += n
print("Computing statistic quantities ...")
# Perform normalization if necessary
if self.pitch_normalization:
pitch_mean = pitch_scaler.mean_[0]
pitch_std = pitch_scaler.scale_[0]
else:
# A numerical trick to avoid normalization...
pitch_mean = 0
pitch_std = 1
if self.energy_normalization:
energy_mean = energy_scaler.mean_[0]
energy_std = energy_scaler.scale_[0]
else:
energy_mean = 0
energy_std = 1
pitch_min, pitch_max = self.normalize(
os.path.join(self.out_dir, "pitch"), pitch_mean, pitch_std
)
energy_min, energy_max = self.normalize(
os.path.join(self.out_dir, "energy"), energy_mean, energy_std
)
# Save files
with open(os.path.join(self.out_dir, "speakers.json"), "w") as f:
f.write(json.dumps(speakers))
# Save emotions in a json file
with open(os.path.join(self.out_dir, "emotions.json"), "w") as f:
f.write(json.dumps(emotions))
with open(os.path.join(self.out_dir, "stats.json"), "w") as f:
stats = {
"pitch": [
float(pitch_min),
float(pitch_max),
float(pitch_mean),
float(pitch_std),
],
"energy": [
float(energy_min),
float(energy_max),
float(energy_mean),
float(energy_std),
],
}
f.write(json.dumps(stats))
print(
"Total time: {} hours".format(
n_frames * self.hop_length / self.sampling_rate / 3600
)
)
random.shuffle(out)
out = [r for r in out if r is not None]
# Write metadata
with open(os.path.join(self.out_dir, "train.txt"), "w", encoding="utf-8") as f:
for m in out[self.val_size:]:
f.write(m + "\n")
with open(os.path.join(self.out_dir, "val.txt"), "w", encoding="utf-8") as f:
for m in out[: self.val_size]:
f.write(m + "\n")
return out
def process_utterance(self, speaker, basename):
wav_path = os.path.join(self.in_dir, speaker,
"{}.wav".format(basename))
text_path = os.path.join(self.in_dir, speaker,
"{}.lab".format(basename))
tg_path = os.path.join(
self.out_dir, "TextGrid", speaker, "{}.TextGrid".format(basename)
)
# Get alignments
textgrid = tgt.io.read_textgrid(tg_path)
phone, duration, start, end = self.get_alignment(
textgrid.get_tier_by_name("phones")
)
text = "{" + " ".join(phone) + "}"
if start >= end:
return None
# Read and trim wav files
wav, _ = librosa.load(wav_path)
wav = wav[
int(self.sampling_rate * start): int(self.sampling_rate * end)
].astype(np.float32)
# Read raw text
with open(text_path, "r") as f:
raw_text = f.readline().strip("\n")
# Compute fundamental frequency
pitch, t = pw.dio(
wav.astype(np.float64),
self.sampling_rate,
frame_period=self.hop_length / self.sampling_rate * 1000,
)
pitch = pw.stonemask(wav.astype(np.float64),
pitch, t, self.sampling_rate)
pitch = pitch[: sum(duration)]
if np.sum(pitch != 0) <= 1:
return None
# Compute mel-scale spectrogram and energy
mel_spectrogram, energy = Audio.tools.get_mel_from_wav(wav, self.STFT)
mel_spectrogram = mel_spectrogram[:, : sum(duration)]
energy = energy[: sum(duration)]
if self.pitch_phoneme_averaging:
# perform linear interpolation
nonzero_ids = np.where(pitch != 0)[0]
interp_fn = interp1d(
nonzero_ids,
pitch[nonzero_ids],
fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]),
bounds_error=False,
)
pitch = interp_fn(np.arange(0, len(pitch)))
# Phoneme-level average
pos = 0
for i, d in enumerate(duration):
if d > 0:
pitch[i] = np.mean(pitch[pos: pos + d])
else:
pitch[i] = 0
pos += d
pitch = pitch[: len(duration)]
if self.energy_phoneme_averaging:
# Phoneme-level average
pos = 0
for i, d in enumerate(duration):
if d > 0:
energy[i] = np.mean(energy[pos: pos + d])
else:
energy[i] = 0
pos += d
energy = energy[: len(duration)]
# Save files
dur_filename = "{}-duration-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "duration", dur_filename), duration)
pitch_filename = "{}-pitch-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "pitch", pitch_filename), pitch)
energy_filename = "{}-energy-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "energy", energy_filename), energy)
mel_filename = "{}-mel-{}.npy".format(speaker, basename)
np.save(
os.path.join(self.out_dir, "mel", mel_filename),
mel_spectrogram.T,
)
return (
"|".join([basename, speaker, text,
raw_text, basename.split('_')[0].lower()]),
self.remove_outlier(pitch),
self.remove_outlier(energy),
mel_spectrogram.shape[1],
)
def get_alignment(self, tier):
sil_phones = ["sil", "sp", "spn"]
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trim leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
# For ordinary phones
phones.append(p)
end_time = e
end_idx = len(phones)
else:
# For silent phones
phones.append(p)
durations.append(
int(
np.round(e * self.sampling_rate / self.hop_length)
- np.round(s * self.sampling_rate / self.hop_length)
)
)
# Trim tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, durations, start_time, end_time
def remove_outlier(self, values):
values = np.array(values)
p25 = np.percentile(values, 25)
p75 = np.percentile(values, 75)
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
normal_indices = np.logical_and(values > lower, values < upper)
return values[normal_indices]
def normalize(self, in_dir, mean, std):
max_value = np.finfo(np.float64).min
min_value = np.finfo(np.float64).max
for filename in os.listdir(in_dir):
filename = os.path.join(in_dir, filename)
values = (np.load(filename) - mean) / std
np.save(filename, values)
max_value = max(max_value, max(values))
min_value = min(min_value, min(values))
return min_value, max_value
|