File size: 5,515 Bytes
feec0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm

LRELU_SLOPE = 0.1


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


class ResBlock(torch.nn.Module):
    def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock, self).__init__()
        self.h = h
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            ]
        )
        self.convs2.apply(init_weights)

    def forward(self, x):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class Generator(torch.nn.Module):
    def __init__(self, h):
        super(Generator, self).__init__()
        self.h = h
        self.num_kernels = len(h.resblock_kernel_sizes)
        self.num_upsamples = len(h.upsample_rates)
        self.conv_pre = weight_norm(
            Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)
        )
        resblock = ResBlock

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        h.upsample_initial_channel // (2 ** i),
                        h.upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = h.upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
            ):
                self.resblocks.append(resblock(h, ch, k, d))

        self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)

    def forward(self, x):
        x = self.conv_pre(x)
        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print("Removing weight norm...")
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()
        remove_weight_norm(self.conv_pre)
        remove_weight_norm(self.conv_post)