File size: 7,064 Bytes
feec0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import os

import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import to_device, log, synth_one_sample
from model import FastSpeech2Loss
from dataset import Dataset

from evaluate import evaluate

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def main(args, configs):
    print("Prepare training ...")

    preprocess_config, model_config, train_config = configs

    # Get dataset
    dataset = Dataset(
        "train.txt", preprocess_config, train_config, sort=True, drop_last=True
    )
    batch_size = train_config["optimizer"]["batch_size"]
    group_size = 4  # Set this larger than 1 to enable sorting in Dataset
    assert batch_size * group_size < len(dataset)
    loader = DataLoader(
        dataset,
        batch_size=batch_size * group_size,
        shuffle=True,
        collate_fn=dataset.collate_fn,
    )

    # Prepare model
    model, optimizer = get_model(args, configs, device, train=True)
    model = nn.DataParallel(model)
    num_param = get_param_num(model)
    Loss = FastSpeech2Loss(preprocess_config, model_config).to(device)
    print("Number of FastSpeech2 Parameters:", num_param)

    # Load vocoder
    vocoder = get_vocoder(model_config, device)

    # Init logger
    for p in train_config["path"].values():
        os.makedirs(p, exist_ok=True)
    train_log_path = os.path.join(train_config["path"]["log_path"], "train")
    val_log_path = os.path.join(train_config["path"]["log_path"], "val")
    os.makedirs(train_log_path, exist_ok=True)
    os.makedirs(val_log_path, exist_ok=True)
    train_logger = SummaryWriter(train_log_path)
    val_logger = SummaryWriter(val_log_path)

    # Training
    step = args.restore_step + 1
    epoch = 1
    grad_acc_step = train_config["optimizer"]["grad_acc_step"]
    grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
    total_step = train_config["step"]["total_step"]
    log_step = train_config["step"]["log_step"]
    save_step = train_config["step"]["save_step"]
    synth_step = train_config["step"]["synth_step"]
    val_step = train_config["step"]["val_step"]

    outer_bar = tqdm(total=total_step, desc="Training", position=0)
    outer_bar.n = args.restore_step
    outer_bar.update()

    while True:
        inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1)
        for batchs in loader:
            for batch in batchs:
                batch = to_device(batch, device)

                # Forward
                output = model(*(batch[2:]))

                # Cal Loss
                losses = Loss(batch, output)
                total_loss = losses[0]

                # Backward
                total_loss = total_loss / grad_acc_step
                total_loss.backward()
                if step % grad_acc_step == 0:
                    # Clipping gradients to avoid gradient explosion
                    nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)

                    # Update weights
                    optimizer.step_and_update_lr()
                    optimizer.zero_grad()

                if step % log_step == 0:
                    losses = [l.item() for l in losses]
                    message1 = "Step {}/{}, ".format(step, total_step)
                    message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format(
                        *losses
                    )

                    with open(os.path.join(train_log_path, "log.txt"), "a") as f:
                        f.write(message1 + message2 + "\n")

                    outer_bar.write(message1 + message2)

                    log(train_logger, step, losses=losses)

                if step % synth_step == 0:
                    fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
                        batch,
                        output,
                        vocoder,
                        model_config,
                        preprocess_config,
                    )
                    log(
                        train_logger,
                        fig=fig,
                        tag="Training/step_{}_{}".format(step, tag),
                    )
                    sampling_rate = preprocess_config["preprocessing"]["audio"][
                        "sampling_rate"
                    ]
                    log(
                        train_logger,
                        audio=wav_reconstruction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_reconstructed".format(step, tag),
                    )
                    log(
                        train_logger,
                        audio=wav_prediction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_synthesized".format(step, tag),
                    )

                if step % val_step == 0:
                    model.eval()
                    message = evaluate(model, step, configs, val_logger, vocoder)
                    with open(os.path.join(val_log_path, "log.txt"), "a") as f:
                        f.write(message + "\n")
                    outer_bar.write(message)

                    model.train()

                if step % save_step == 0:
                    torch.save(
                        {
                            "model": model.module.state_dict(),
                            "optimizer": optimizer._optimizer.state_dict(),
                        },
                        os.path.join(
                            train_config["path"]["ckpt_path"],
                            "{}.pth.tar".format(step),
                        ),
                    )

                if step == total_step:
                    quit()
                step += 1
                outer_bar.update(1)

            inner_bar.update(1)
        epoch += 1


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--restore_step", type=int, default=0)
    parser.add_argument(
        "-p",
        "--preprocess_config",
        type=str,
        required=True,
        help="path to preprocess.yaml",
    )
    parser.add_argument(
        "-m", "--model_config", type=str, required=True, help="path to model.yaml"
    )
    parser.add_argument(
        "-t", "--train_config", type=str, required=True, help="path to train.yaml"
    )
    args = parser.parse_args()

    # Read Config
    preprocess_config = yaml.load(
        open(args.preprocess_config, "r"), Loader=yaml.FullLoader
    )
    model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
    train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
    configs = (preprocess_config, model_config, train_config)

    main(args, configs)