Spaces:
Running
Running
File size: 9,340 Bytes
6b95d78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#%%
import pandas as pd
import numpy as np
import vnstock as vns
import matplotlib.pyplot as plt
from datetime import datetime
def get_candle_plot(df: pd.DataFrame, buy_sell_df: pd.DataFrame ) -> None:
# "up" dataframe will store the self.df
# when the closing stock price is greater
# than or equal to the opening stock prices
up = df[df.close >= df.open]
# "down" dataframe will store the df
# when the closing stock price is
# lesser than the opening stock prices
down = df[df.close < df.open]
# When the stock prices have decreased, then it
# will be represented by blue color candlestick
col1 = 'red'
# When the stock prices have increased, then it
# will be represented by green color candlestick
col2 = 'green'
# Setting width of candlestick elements
width = .3
width2 = .03
fig = plt.figure()
# Plotting up prices of the stock
plt.bar(up.time, up.close-up.open, width, bottom=up.open, color=col1)
plt.bar(up.time, up.high-up.close, width2, bottom=up.close, color=col1)
plt.bar(up.time, up.low-up.open, width2, bottom=up.open, color=col1)
# Plotting down prices of the stock
plt.bar(down.time, down.close-down.open, width, bottom=down.open, color=col2)
plt.bar(down.time, down.high-down.open, width2, bottom=down.open, color=col2)
plt.bar(down.time, down.low-down.close, width2, bottom=down.close, color=col2)
# x and y labeling
plt.xlabel("Index")
plt.ylabel("Prices (VND)")
# plot buy point
for i in buy_sell_df.index:
if buy_sell_df.signal.loc[i] == "buy":
color = "red"
else:
color = "blue"
plt.axvline(x = buy_sell_df.date.loc[i],
color = color,
linestyle='--' )
# displaying candlestick chart of stock data
# of a week
plt.show()
class CandleBlow():
def __init__(self, df: pd.DataFrame,
is_viz: bool=True, use_close_price: bool=True,
slope_thres = 55) -> None:
# init variables
self.df = df
self.is_buy = False
self.is_sell = False
# ensure slope thres is positbve
slope_thres = abs(slope_thres)
# detect hammer value
self.is_hammer = self.detect_hammer(tail_ratio=2, tol_pct=0.1/100)
self.is_reverse_hammer = self.detect_inverse_hammer(tail_ratio=2, tol_pct=0.1/100)
# change point
is_change_point = self.is_hammer or self.is_reverse_hammer
if is_change_point:
# get fit
self.fit_function, self.fit_values = self.__get_fit(degree=1, use_close_price=use_close_price)
# find derivative
self.deriv_function, self.deriv_value = self.__get_derivative(self.fit_function)
# indentify buy point
if abs(self.deriv_value[-1]) > slope_thres and is_viz:
self.__get_viz(self.fit_values, self.deriv_value)
is_buy = self.deriv_value[-1] < -slope_thres
is_sell = self.deriv_value[-1] > slope_thres
self.is_buy = is_change_point and is_buy
self.is_sell = is_change_point and is_sell
def __get_viz(self, fit_values=None, deriv_value=None) -> None:
# "up" dataframe will store the self.df
# when the closing stock price is greater
# than or equal to the opening stock prices
up = self.df[self.df.close >= self.df.open]
# "down" dataframe will store the self.df
# when the closing stock price is
# lesser than the opening stock prices
down = self.df[self.df.close < self.df.open]
# When the stock prices have decreased, then it
# will be represented by blue color candlestick
col1 = 'red'
# When the stock prices have increased, then it
# will be represented by green color candlestick
col2 = 'green'
# Setting width of candlestick elements
width = .3
width2 = .03
fig, axs = plt.subplots(2,1, sharex=True)
# Plotting up prices of the stock
axs[0].bar(up.index, up.close-up.open, width, bottom=up.open, color=col1)
axs[0].bar(up.index, up.high-up.close, width2, bottom=up.close, color=col1)
axs[0].bar(up.index, up.low-up.open, width2, bottom=up.open, color=col1)
# Plotting down prices of the stock
axs[0].bar(down.index, down.close-down.open, width, bottom=down.open, color=col2)
axs[0].bar(down.index, down.high-down.open, width2, bottom=down.open, color=col2)
axs[0].bar(down.index, down.low-down.close, width2, bottom=down.close, color=col2)
# x and y labeling
axs[1].set_xlabel("Index")
axs[0].set_ylabel("Prices (VND)")
if len(fit_values) > 0:
axs[0].plot(self.df.index, fit_values, label = "Fit Line")
if len(deriv_value) > 0:
axs[1].plot(self.df.index, deriv_value, label = "Derivative Line")
axs[0].grid()
axs[1].grid()
# displaying candlestick chart of stock data
# of a week
fig.show()
def __get_fit(self, degree: int = 5,
use_close_price: bool = True) -> np.ndarray:
"""
Get poly fit coef and value estimation for stock data:
Inputs:
self.df: pd.DataFrame, stock price from vnstock
degree: int, how tight is the fit
use_close: bool, use close or open price
Outputs:
est_value: fit estimate value
var: np.poly1d object function of the polyfit
"""
if use_close_price:
price = self.df.close
else:
price = self.df.open
data_len = self.df.shape[0]
# Perform polynomial fitting
coefficients = np.polyfit(self.df.index, price, degree)
# funciton
fit_function = np.poly1d(coefficients)
index = np.arange(data_len)
est_value = fit_function(index)
# # get y_axis value
# est_value = self.__get_fit_value(coefficients ,self.df.shape[0])
return fit_function, est_value
def __get_derivative(self, fit_function: np.poly1d) -> np.poly1d:
"""
Find derivative function of the fit function
Inputs:
fit_function: np.poly1d object of the fit function, produced by np.polyfit
outputs:
deriv_function: np.poly1d objects of the derivative function
deriv_value: np.ndarray of the output value from deriv function
"""
data_len = self.df.shape[0]
deriv_function = fit_function.deriv()
deriv_value = deriv_function(np.arange(data_len))
return deriv_function, deriv_value
def detect_hammer(self,
tol_pct = 0.1 / 100,
tail_ratio = 2.5) -> bool:
today_price = self.df.iloc[-1]
close = today_price.close
open = today_price.open
high = today_price.high
low = today_price.low
tol_price = high - tol_pct * high
return ((close >= tol_price or open >= tol_price)
and high - low >= tail_ratio * abs(close - open))
def detect_inverse_hammer(self,
tol_pct = 0.1 / 100,
tail_ratio = 2.5) -> bool:
today_price = self.df.iloc[-1]
close = today_price.close
open = today_price.open
high = today_price.high
low = today_price.low
tol_price = low + tol_pct * high
return ((close <= tol_price or open <= tol_price)
and high - low >= tail_ratio * abs(close - open))
#%%
# Sample Use
if __name__ == "__main__":
df = vns.stock_historical_data(symbol="ACB", start_date="2023-01-15",
end_date='2024-01-15', resolution='1D',
type='stock', beautify=True, decor=False)
buy_sell_df = pd.DataFrame({"date": [df.time.iloc[0]],
"hammer": [True],
"reverse_hammer": [True],
"signal":["buy"]})
# use trend from 1.5 trading week
for i in range(7, df.shape[0]):
train_data = df.iloc[i-7 : i]
candle = CandleBlow(df=train_data,
use_close_price=False,
is_viz=False)
if candle.is_buy:
buy_sell_df.loc[buy_sell_df.shape[0]] = {"date": train_data.time.iloc[-1],
"hammer": candle.is_hammer,
"reverse_hammer": candle.is_reverse_hammer,
"signal":"buy"}
if candle.is_sell:
buy_sell_df.loc[buy_sell_df.shape[0]] = {"date": train_data.time.iloc[-1],
"hammer": candle.is_hammer,
"reverse_hammer": candle.is_reverse_hammer,
"signal":"sell"}
# plot result
buy_sell_df = buy_sell_df.iloc[1:]
get_candle_plot(df, buy_sell_df)
|