File size: 6,754 Bytes
884dad1
 
 
 
048da70
 
 
 
884dad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
048da70
 
884dad1
 
 
 
 
 
048da70
 
 
 
 
 
 
 
884dad1
 
 
 
 
 
 
 
048da70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
884dad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import requests
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
from vnstock import longterm_ohlc_data, stock_historical_data, price_board
from pymongo import MongoClient, ASCENDING, DESCENDING
from utils.config import DATE_FORMAT
import os

PREFIX = "https://www.hsx.vn/Modules/Chart/StaticChart/"
TIME = {"1m": 2, "3m": 3, "6m": 4, "1y": 5, "2y": 6, "5y": 7}
INDICATORS = {
    "EMA": "GetEmaChart",
    "MACD": "GetMacdChart",
    "RSI": "GetRsiChart",
    "Momentum": "GetMomentumChart",
    "Williams %R": "GetWilliamChart",
    "BollingerBand": "GetBollingerBandChart",
}


class Indicator:
    def __init__(self) -> None:
        pass

    @staticmethod
    def get_price(symbol: str,
                  count_back: int = 100,
                  symbol_type: str = "stock",) -> pd.DataFrame:
        resolution = "D"
        end_date = datetime.now()
        delta = timedelta(days=count_back)
        start_date = end_date - delta
        start_date = datetime.strftime(start_date, '%Y-%m-%d')
        end_date = datetime.strftime(end_date, '%Y-%m-%d')
        df = longterm_ohlc_data(symbol, start_date, end_date,
                                resolution, symbol_type).reset_index(drop=True)
        df[['open', 'high', 'low', 'close']] = \
            df[['open', 'high', 'low', 'close']] * 1000
        # convert open, high, low, close to int
        df[['open', 'high', 'low', 'close']] = \
            df[['open', 'high', 'low', 'close']].astype(int)
        return df

    @staticmethod
    def get_rsi(
        symbol: str,
        periods: int = 14,
        smooth_k: int = 3,
        smooth_d: int = 3,
    ) -> pd.DataFrame:
        try:
            symbol = symbol.upper()
            uri = os.environ.get("MONGODB_URI")
            client = MongoClient(uri)
            database = client.get_database("data")
            collection = database.get_collection("rsi")
            datetime_now = datetime.utcnow()
            hour = datetime_now.hour
            weekday = datetime_now.weekday()
            error = False
            if weekday < 5 and hour >= 12:  # Check if data is updated
                newest_record = collection.find_one(sort=[("_id", DESCENDING)])
                delta = timedelta(days=20)
                start_date = datetime_now - delta
                start_date = start_date.strftime(DATE_FORMAT)
                end_date = datetime_now.strftime(DATE_FORMAT)
                tmp_df = stock_historical_data("MBB", start_date, end_date)
                last_date = str(tmp_df["time"].iloc[-1])
                if newest_record["time"] != last_date:
                    try:
                        lst_symbols = list(newest_record.keys())[2:]
                        record = {}
                        record["time"] = last_date
                        for s in lst_symbols:
                            url = PREFIX + INDICATORS["RSI"] + \
                                f"?stockSymbol={symbol}\
                                    &rangeSelector=0\
                                        &periods={periods}"
                            data = requests.get(url).json()
                            lst_rsi = data["SeriesColection"][0]["Points"]
                            record[s] = lst_rsi[-1]["Value"][0]
                        collection.find_one_and_delete(
                            sort=[("_id", ASCENDING)])
                        collection.insert_one(record)
                        print("Updated data")
                    except Exception:
                        error = True
            records = list(collection.find())
            record_df = pd.DataFrame(records).drop(columns=["_id"])
            record_df = \
                record_df[["time", symbol]].rename(columns={symbol: "rsi"})
            if error:
                new_df = price_board(symbol)
                record_df.loc[len(record_df)] = new_df[["time", "RSI"]].values
            record_df["stoch_rsi"] = \
                Indicator.stoch_rsi(record_df["rsi"], periods)
            record_df["stoch_rsi_smooth_k"] = \
                Indicator.stoch_rsi_smooth_k(record_df["stoch_rsi"], smooth_k)
            record_df["stoch_rsi_smooth_d"] = Indicator.stoch_rsi_smooth_d(
                record_df["stoch_rsi_smooth_k"], smooth_d
            )
            return record_df
        except Exception:
            return None

    @staticmethod
    def stoch_rsi(rsi: pd.Series, periods: int = 14) -> pd.Series:
        ma, mi = (
            rsi.rolling(window=periods).max(),
            rsi.rolling(window=periods).min(),
        )
        return (rsi - mi) * 100 / (ma - mi)

    @staticmethod
    def stoch_rsi_smooth_k(stoch_rsi: pd.Series, k: int) -> pd.Series:
        return stoch_rsi.rolling(window=k).mean()

    @staticmethod
    def stoch_rsi_smooth_d(stoch_rsi_k: pd.Series, d: int) -> pd.Series:
        return stoch_rsi_k.rolling(window=d).mean()

    @staticmethod
    def get_ichimoku_cloud(
        df: pd.DataFrame,
        conversion_period=9,
        base_period=26,
        span_b_period=52,
        displacement=26,
    ) -> pd.DataFrame:
        space_displacement = np.full(displacement, np.nan)
        tenkan_sen = (
            df["high"].rolling(window=conversion_period).max()
            + df["low"].rolling(window=conversion_period).min()
        ) / 2
        kijun_sen = (
            df["high"].rolling(window=base_period).max()
            + df["low"].rolling(window=base_period).min()
        ) / 2
        senkou_span_a = (tenkan_sen + kijun_sen) / 2
        senkou_span_b = (
            df["high"].rolling(window=span_b_period).max()
            + df["low"].rolling(window=span_b_period).min()
        ) / 2
        chikou_span = df["close"].shift(-displacement)

        date_displacement = np.array(
            list(map(str, np.arange(1, displacement+1))))
        time = np.concatenate((df["time"], date_displacement))
        tenkan_sen = np.concatenate((tenkan_sen, space_displacement))
        kijun_sen = np.concatenate((kijun_sen, space_displacement))
        senkou_span_a = np.concatenate((space_displacement, senkou_span_a))
        senkou_span_b = np.concatenate((space_displacement, senkou_span_b))
        chikou_span = np.concatenate((chikou_span, space_displacement))

        data_dict = {
            "time": time,
            "tenkan_sen": tenkan_sen,
            "kijun_sen": kijun_sen,
            "senkou_span_a": senkou_span_a,
            "senkou_span_b": senkou_span_b,
            "chikou_span": chikou_span,
            "tenkan_kijun": tenkan_sen - kijun_sen,
            "kumo_cloud": senkou_span_a - senkou_span_b,
            "signal": senkou_span_a > senkou_span_b,
        }
        return pd.DataFrame(data_dict)