Spaces:
Running
Running
File size: 27,767 Bytes
7ed8641 f9f7ead 7ed8641 a7148c9 f9f7ead 67e1ee3 7ed8641 dd706e6 7ed8641 0b7487f aa06d19 7ed8641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import streamlit as st
import pandas as pd
import asyncio
import io
import contextlib
import os
from pathlib import Path
from intelpreventativehealthcare import (
target_patients_outreach,
find_patients,
write_outreach_emails,
get_configs,
)
# Import the prompt templates
from intelpreventativehealthcare import (
USER_PROXY_PROMPT,
EPIDEMIOLOGIST_PROMPT,
DOCTOR_CRITIC_PROMPT,
OUTREACH_EMAIL_PROMPT_TEMPLATE,
)
from openai import OpenAI
import streamlit.components.v1 as components # Add this import for custom HTML
# Streamlit app configuration
st.set_page_config(page_title="Preventative Healthcare Outreach", layout="wide")
# Title at the top of the app
st.title("Cloud Native Agentic Workflows in Healthcare")
st.markdown("""
Welcome to your preventative healthcare outreach agentic system, built using the open-source framework [AutoGen](https://github.com/microsoft/autogen).
To improve patient health outcomes, healthcare providers are looking for ways to reach out to patients who may be eligible for preventative screenings. This system is designed to help you automate the process of identifying patients who meet specific screening criteria and generating personalized emails to encourage them to schedule their screenings.
The user provides a very broad screening criteria, and then the system uses AI agents to generate patient-specific criteria, filter patients from a given database, and ultimately write outreach emails to suggest to patients that they schedule a screening. To get the agents working, you can use the sidebar on the left of the UI to:
1. Customize the prompts for the agents. They use natural language understanding to execute on a workflow. You can use the default ones to get started, and modify to your more specific needs.
2. Select default (synthetically generated) patient data, or upload your own CSV file.
3. Describe a medical screening task.
4. Click on "Generate Outreach Emails" to create draft emails to patients (.txt files with email drafts).
""")
# Function to read README.md file
def read_readme():
readme_path = Path(__file__).parent / "README.md"
if readme_path.exists():
with open(readme_path, 'r') as f:
readme_content = f.read()
# Remove metadata block (everything between the first pair of "---")
if readme_content.startswith("---"):
metadata_end = readme_content.find("---", 3) # Find the closing "---"
if metadata_end != -1:
readme_content = readme_content[metadata_end + 3:].strip()
return readme_content
else:
return "README.md file not found in the project directory."
# Function to embed SVG images directly into the markdown content
def fix_svg_images_in_markdown(markdown_content):
import re
# Find SVG image tags in the markdown content
svg_pattern = r'<img[^>]*src="([^"]*\.svg)"[^>]*>'
def replace_with_embedded_svg(match):
img_tag = match.group(0)
src_match = re.search(r'src="([^"]*)"', img_tag)
if not src_match:
return img_tag
src_path = src_match.group(1)
width_match = re.search(r'width="([^"]*)"', img_tag)
width = width_match.group(1) if width_match else "100%"
# Construct full path to the image
img_path = Path(__file__).parent / src_path
if img_path.exists():
try:
# Read SVG content directly
with open(img_path, 'r') as f:
svg_content = f.read()
# Create a custom HTML component for the SVG with proper styling
return f"""<div style="text-align:center; margin:20px 0;">
<div style="max-width:{width}px; margin:0 auto;">
{svg_content}
</div>
</div>"""
except Exception as e:
return f"""<div style="text-align:center; color:red; padding:10px;">
Error loading SVG image: {e}
</div>"""
else:
return f"""<div style="text-align:center; color:red; padding:10px;">
Image not found: {src_path}
</div>"""
# Replace all SVG image tags with embedded SVG content
return re.sub(svg_pattern, replace_with_embedded_svg, markdown_content)
# Create tabs
tab1, tab2 = st.tabs(["Healthcare Outreach App", "README"])
# Initialize session state for prompts if not already present
if 'user_proxy_prompt' not in st.session_state:
st.session_state.user_proxy_prompt = USER_PROXY_PROMPT
if 'epidemiologist_prompt' not in st.session_state:
st.session_state.epidemiologist_prompt = EPIDEMIOLOGIST_PROMPT
if 'doctor_critic_prompt' not in st.session_state:
st.session_state.doctor_critic_prompt = DOCTOR_CRITIC_PROMPT
if 'outreach_email_prompt' not in st.session_state:
st.session_state.outreach_email_prompt = OUTREACH_EMAIL_PROMPT_TEMPLATE
# Main Healthcare App Tab (Tab 1)
with tab1:
# --- Activity/log screen for agent communication ---
st.markdown("### Activity Log")
# Create a container with fixed height and scrollbar for logs
log_container = st.container()
with log_container:
# Use an expander that's open by default to contain the log
with st.expander("Real-time Log", expanded=True):
log_placeholder = st.empty()
# --- Move user inputs, instructions, and CSV column info to sidebar ---
with st.sidebar:
# Add a section for customizing prompts at the top of the sidebar
st.markdown("### Customize Agent Prompts")
st.caption("The agents use LLMs and natural language understanding (NLU) to organize the tasks they need to accomplish. You can modify the prompts for each agent below; these prompts are given to the agents so that they can work together to produce the final outreach emails for the preventative healthcare task at hand.")
# User Proxy Prompt
with st.expander("User Proxy Prompt"):
user_prompt = st.text_area(
"User Proxy Prompt",
value=st.session_state.user_proxy_prompt,
height=300,
key="user_proxy_input",
label_visibility="hidden",
# Add these style properties to preserve whitespace formatting
help="",
placeholder="",
disabled=False,
# Use CSS to preserve whitespace formatting
max_chars=None
)
st.session_state.user_proxy_prompt = user_prompt
# Epidemiologist Prompt
with st.expander("Epidemiologist Prompt"):
epi_prompt = st.text_area(
"Epidemiologist Prompt",
value=st.session_state.epidemiologist_prompt,
height=300,
key="epidemiologist_input",
label_visibility="hidden",
help="",
placeholder="",
disabled=False,
max_chars=None
)
st.session_state.epidemiologist_prompt = epi_prompt
# Doctor Critic Prompt
with st.expander("Doctor Critic Prompt"):
doc_prompt = st.text_area(
"Doctor Critic Prompt",
value=st.session_state.doctor_critic_prompt,
height=300,
key="doctor_critic_input",
label_visibility="hidden",
help="",
placeholder="",
disabled=False,
max_chars=None
)
st.session_state.doctor_critic_prompt = doc_prompt
# Outreach Email Prompt Template
with st.expander("Email Template Prompt"):
email_prompt = st.text_area(
"Email Template Prompt",
value=st.session_state.outreach_email_prompt,
height=300,
key="email_template_input",
label_visibility="hidden",
help="",
placeholder="",
disabled=False,
max_chars=None
)
st.session_state.outreach_email_prompt = email_prompt
# Add custom CSS to preserve whitespace in text areas while ensuring content fits
st.markdown("""
<style>
.stTextArea textarea {
font-family: monospace;
white-space: pre-wrap !important; /* Use pre-wrap to preserve whitespace but allow wrapping */
word-wrap: break-word !important; /* Ensure words break to next line if needed */
line-height: 1.4;
tab-size: 2; /* Reduce tab size to save space */
padding: 8px;
font-size: 0.9em; /* Slightly smaller font to fit more content */
}
</style>
""", unsafe_allow_html=True)
# Reset prompts button
if st.button("Reset Prompts to Default"):
st.session_state.user_proxy_prompt = USER_PROXY_PROMPT
st.session_state.epidemiologist_prompt = EPIDEMIOLOGIST_PROMPT
st.session_state.doctor_critic_prompt = DOCTOR_CRITIC_PROMPT
st.session_state.outreach_email_prompt = OUTREACH_EMAIL_PROMPT_TEMPLATE
st.rerun()
st.markdown("---")
# Now add the "Get started" section after the prompts
st.header("Patient Data and Screening Task")
st.caption("Required CSV columns: patient_id, First Name, Last Name, Email, Patient diagnosis summary, age, gender, condition")
# Create a container for the default dataset option to control its appearance
default_dataset_container = st.container()
# Add the file upload option after the default dataset option
uploaded_file = st.file_uploader("Upload your own CSV file with patient data", type=["csv"])
# If a file is uploaded, show a message and disable the default checkbox
if uploaded_file is not None:
# Visual indication that custom data is being used
st.success("β
Using your uploaded file")
# Disable the default dataset option with clear visual feedback
with default_dataset_container:
st.markdown("""
<div style="opacity: 0.5; pointer-events: none;">
<input type="checkbox" disabled> Use default dataset (data/patients.csv)
<div style="font-size: 0.8em; color: #999; font-style: italic;">
Disabled because custom file is uploaded
</div>
</div>
""", unsafe_allow_html=True)
# Set use_default to False when a file is uploaded
use_default = False
else:
# No file uploaded, show normal checkbox
with default_dataset_container:
use_default = st.checkbox("Use default dataset (data/patients.csv)", value=True)
st.markdown("For more information about medical screening tasks, you can visit the website below.")
st.link_button("U.S. Preventive Services Task Force","https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-a-and-b-recommendations")
screening_task = st.text_input("Enter the medical screening task (e.g., 'Colonoscopy screening').", "Colonoscopy screening")
# Add contact information section
st.markdown("---")
st.subheader("Healthcare Provider Contact Information")
st.caption("This information will appear in the emails sent to patients")
# Create three columns for contact info fields
col1, col2, col3 = st.columns(3)
with col1:
provider_name = st.text_input("Provider Name", "Benjamin Consolvo")
with col2:
provider_email = st.text_input("Provider Email", "doctor@doctor.com")
with col3:
provider_phone = st.text_input("Provider Phone", "123-456-7890")
# Validate input fields before enabling the button
required_fields_empty = (
screening_task.strip() == "" or
provider_name.strip() == "" or
provider_email.strip() == "" or
provider_phone.strip() == ""
)
if required_fields_empty:
st.warning("Please fill in all required fields before proceeding.")
st.markdown("---")
# Move the button to the sidebar - disabled if required fields are empty
generate = st.button("Generate Outreach Emails", disabled=required_fields_empty)
# Explicitly set environment variable to avoid TTY errors
os.environ["PYTHONUNBUFFERED"] = "1"
# Only run the generation logic if we're on the first tab
if tab1._active and generate:
# Since the button can only be clicked when all fields are filled,
# we don't need additional validation here
# Hugging Face secrets
api_key = st.secrets["OPENAI_API_KEY"]
base_url = st.secrets["OPENAI_BASE_URL"]
# --- Initialize log ---
log_messages = []
def log(msg):
log_messages.append(msg)
# Show all messages in the scrollable container with better contrast
log_placeholder.markdown(
f"""
<div style="height: 400px; overflow-y: auto; border: 1px solid #cccccc;
padding: 15px; border-radius: 5px; background-color: rgba(240, 242, 246, 0.4);
color: inherit; font-family: monospace;">
{"<br>".join(log_messages)}
</div>
""",
unsafe_allow_html=True
)
# Capture stdout/stderr during the workflow
stdout_buffer = io.StringIO()
stderr_buffer = io.StringIO()
with contextlib.redirect_stdout(stdout_buffer), contextlib.redirect_stderr(stderr_buffer):
if not screening_task:
st.error("Please enter a medical screening task.")
elif not uploaded_file and not use_default:
st.error("Please upload a CSV file or select the default dataset.")
else:
# Load patient data
if uploaded_file:
patients_file = uploaded_file
else:
# Use absolute path for default dataset
patients_file = os.path.join(os.path.dirname(__file__), "data/patients.csv")
try:
patients_df = pd.read_csv(patients_file)
except Exception as e:
st.error(f"Error reading the CSV file: {e}")
st.stop()
# Validate required columns
required_columns = [
'patient_id', 'First Name', 'Last Name', 'Email',
'Patient diagnosis summary', 'age', 'gender', 'condition'
]
if not all(col in patients_df.columns for col in required_columns):
st.error(f"The uploaded CSV file is missing required columns: {required_columns}")
st.stop()
# Load configurations
llama_filter_dict = {"model": ["meta-llama/Llama-3.3-70B-Instruct"]}
deepseek_filter_dict = {"model": ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B"]}
config_list_llama = get_configs("OAI_CONFIG_LIST.json", llama_filter_dict)
config_list_deepseek = get_configs("OAI_CONFIG_LIST.json", deepseek_filter_dict)
# Ensure the API key from secrets is used
for config in config_list_llama:
config["api_key"] = api_key
for config in config_list_deepseek:
config["api_key"] = api_key
# --- Log agent communication ---
log("π’ <b>Starting agent workflow...</b>")
log("π§ββοΈ <b>Screening task:</b> " + screening_task)
log("π <b>Loaded patient data:</b> {} records".format(len(patients_df)))
# Generate criteria for outreach - Pass the custom prompts
log("π€ <b>Agent (Llama):</b> Generating outreach criteria...")
criteria = asyncio.run(target_patients_outreach(
screening_task, config_list_llama, config_list_deepseek,
log_fn=log if "log_fn" in target_patients_outreach.__code__.co_varnames else None,
user_proxy_prompt=st.session_state.user_proxy_prompt,
epidemiologist_prompt=st.session_state.epidemiologist_prompt,
doctor_critic_prompt=st.session_state.doctor_critic_prompt
))
log("β
<b>Criteria generated.</b>")
# Find patients matching criteria
log("π€ <b>Agent (Llama):</b> Filtering patients based on criteria...")
filtered_patients, arguments_criteria = asyncio.run(find_patients(
criteria, config_list_llama,
log_fn=log if "log_fn" in find_patients.__code__.co_varnames else None,
patients_file_path=patients_file # Use correct parameter name: patients_file_path
))
log("β
<b>Patients filtered.</b>")
if filtered_patients.empty:
log("β οΈ <b>No patients matched the criteria.</b>")
st.warning("No patients matched the criteria.")
else:
# Initialize OpenAI client
openai_client = OpenAI(api_key=api_key, base_url=base_url)
# Generate outreach emails - Pass the custom email template
log("π€ <b>Agent (Llama):</b> Generating outreach emails...")
asyncio.run(write_outreach_emails(
filtered_patients,
screening_task,
arguments_criteria,
openai_client,
config_list_llama[0]['model'],
phone=provider_phone, # Pass the provider's phone from form
email=provider_email, # Pass the provider's email from form
name=provider_name, # Pass the provider's name from form
log_fn=log if "log_fn" in write_outreach_emails.__code__.co_varnames else None,
outreach_email_prompt_template=st.session_state.outreach_email_prompt
))
# Make sure data directory exists (for Hugging Face Spaces)
data_dir = os.path.join(os.path.dirname(__file__), "data")
os.makedirs(data_dir, exist_ok=True)
# Generate expected email filenames based on filtered patients
expected_email_files = []
for _, patient in filtered_patients.iterrows():
# Construct the expected filename based on patient data
firstname = patient['First Name']
lastname = patient['Last Name']
filename = f"{firstname}_{lastname}_email.txt"
if os.path.exists(os.path.join(data_dir, filename)):
expected_email_files.append(filename)
# Use only the email files for patients in the filtered DataFrame
email_files = expected_email_files
if email_files:
log("β
<b>Outreach emails generated successfully:</b> {} emails created".format(len(email_files)))
st.success(f"{len(email_files)} outreach emails have been generated!")
# Create a section for downloads
st.markdown("### Download Generated Emails")
# Store email content in session state to persist across interactions
if 'email_contents' not in st.session_state:
st.session_state.email_contents = {}
for email_file in email_files:
with open(os.path.join(data_dir, email_file), 'r') as f:
st.session_state.email_contents[email_file] = f.read()
# Create ZIP file only once and store in session state
if 'zip_buffer' not in st.session_state:
import zipfile
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for email_file, content in st.session_state.email_contents.items():
zip_file.writestr(email_file, content)
st.session_state.zip_buffer = zip_buffer.getvalue()
# Create base64 encoding of zip file
import base64
b64_zip = base64.b64encode(st.session_state.zip_buffer).decode()
# Create HTML for ZIP download - Use components.html instead of st.markdown
zip_html = f"""
<div style="margin-bottom: 20px;">
<a href="data:application/zip;base64,{b64_zip}"
download="patient_emails.zip"
style="text-decoration: none; display: inline-block; padding: 12px 18px;
border: 1px solid #ddd; border-radius: 4px; background-color: #4CAF50;
color: white; font-size: 16px; font-weight: bold; text-align: center;">
π¦ Download All Emails as ZIP
</a>
</div>
"""
# Use components.html instead of st.markdown for ZIP download
components.html(zip_html, height=70)
st.markdown("---")
st.markdown("#### Individual Email Downloads")
# Generate HTML for individual email downloads
individual_html = """
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
"""
# Generate download links for all emails
for i, email_file in enumerate(email_files):
file_content = st.session_state.email_contents.get(email_file, "")
# Create a base64 encoded version of the file content
b64_content = base64.b64encode(file_content.encode()).decode()
# Extract a more complete display name (First + Last name)
name_parts = email_file.split('_')[:2] # Get first and last name parts
display_name = " ".join(name_parts) # Join with space to create "First Last"
# Add download link to HTML
individual_html += f"""
<a href="data:text/plain;base64,{b64_content}"
download="{email_file}"
style="text-decoration: none; display: inline-block; margin: 4px; padding: 8px 12px;
border: 1px solid #ddd; border-radius: 4px; background-color: #f0f2f6;
color: #262730; font-size: 14px; text-align: center; min-width: 120px;">
{display_name}
</a>
"""
individual_html += """
</div>
"""
# Use components.html for individual downloads - estimate height based on number of emails
# Increase height calculation to account for potentially longer names
components.html(individual_html, height=100 + (len(email_files) // 4) * 60)
else:
log("β οΈ <b>Email generation process completed but no email files were found.</b>")
st.warning("The email generation process completed but no email files were found in the data directory. This might indicate an issue with the email generation or file saving process.")
# After workflow, append captured output
std_output = stdout_buffer.getvalue()
std_error = stderr_buffer.getvalue()
if std_output:
log_messages.append("<b>Terminal Output:</b>")
for line in std_output.splitlines():
if line.strip(): # Skip empty lines
log_messages.append(line)
# Update the log display with all messages using better contrast
log_placeholder.markdown(
f"""
<div style="height: 400px; overflow-y: auto; border: 1px solid #cccccc;
padding: 15px; border-radius: 5px; background-color: rgba(240, 242, 246, 0.4);
color: inherit; font-family: monospace;">
{"<br>".join(log_messages)}
</div>
""",
unsafe_allow_html=True
)
if std_error:
log_messages.append("<b style='color:#ff6b6b;'>Terminal Error:</b>")
for line in std_error.splitlines():
if line.strip(): # Skip empty lines
log_messages.append(f"<span style='color:#ff6b6b;'>{line}</span>")
# Update the log display with all messages
log_placeholder.markdown(
f"""
<div style="height: 400px; overflow-y: auto; border: 1px solid #cccccc;
padding: 15px; border-radius: 5px; background-color: rgba(240, 242, 246, 0.4);
color: inherit; font-family: monospace;">
{"<br>".join(log_messages)}
</div>
""",
unsafe_allow_html=True
)
# README Tab (Tab 2)
with tab2:
readme_content = read_readme()
# Process the README content to properly handle SVG images
readme_with_embedded_svgs = fix_svg_images_in_markdown(readme_content)
# Use unsafe_allow_html=True to render HTML content properly
st.markdown(readme_with_embedded_svgs, unsafe_allow_html=True)
# Add CSS to ensure SVGs are responsive and display properly
st.markdown("""
<style>
svg {
max-width: 100%;
height: auto;
}
</style>
""", unsafe_allow_html=True)
|